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Abstract

Deep learning is becoming increasingly relevant for many high-stakes applications such as
autonomous driving or medical diagnosis where wrong decisions can have massive impact
on human lives. Unfortunately, deep neural networks are typically assessed solely based on
generalization, e.g., accuracy on a fixed test set. However, this is clearly insufficient for safe
deployment as potential malicious actors and distribution shifts or the effects of quantization
and unreliable hardware are disregarded. Thus, recent work additionally evaluates performance
on potentially manipulated or corrupted inputs as well as after quantization and deployment
on specialized hardware. In such settings, it is also important to obtain reasonable estimates of
the model’s confidence alongside its predictions. This thesis studies robustness and uncertainty
estimation in deep learning along three main directions: First, we consider so-called adversarial
examples, slightly perturbed inputs causing severe drops in accuracy. Second, we study weight
perturbations, focusing particularly on bit errors in quantized weights. This is relevant for
deploying models on special-purpose hardware for efficient inference, so-called accelerators.
Finally, we address uncertainty estimation to improve robustness and provide meaningful
statistical performance guarantees for safe deployment.

In detail, we study the existence of adversarial examples with respect to the underlying data
manifold. In this context, we also investigate adversarial training which improves robustness
by augmenting training with adversarial examples at the cost of reduced accuracy. We show
that regular adversarial examples leave the data manifold in an almost orthogonal direction.
While we find no inherent trade-off between robustness and accuracy, this contributes to a
higher sample complexity as well as severe overfitting of adversarial training. Using a novel
measure of flatness in the robust loss landscape with respect to weight changes, we also show
that robust overfitting is caused by converging to particularly sharp minima. In fact, we find a
clear correlation between flatness and good robust generalization.

Further, we study random and adversarial bit errors in quantized weights. In accelerators,
random bit errors occur in the memory when reducing voltage with the goal of improving
energy-efficiency. Here, we consider a robust quantization scheme, use weight clipping as
regularization and perform random bit error training to improve bit error robustness, allowing
considerable energy savings without requiring hardware changes. In contrast, adversarial bit
errors are maliciously introduced through hardware- or software-based attacks on the memory,
with severe consequences on performance. We propose a novel adversarial bit error attack to
study this threat and use adversarial bit error training to improve robustness and thereby also
the accelerator’s security.

Finally, we view robustness in the context of uncertainty estimation. By encouraging
low-confidence predictions on adversarial examples, our confidence-calibrated adversarial training
successfully rejects adversarial, corrupted as well as out-of-distribution examples at test time.
Thereby, we are also able to improve the robustness-accuracy trade-off compared to regular
adversarial training. However, even robust models do not provide any guarantee for safe
deployment. To address this problem, conformal prediction allows the model to predict confidence
sets with user-specified guarantee of including the true label. Unfortunately, as conformal
prediction is usually applied after training, the model is trained without taking this calibration
step into account. To address this limitation, we propose conformal training which allows
training conformal predictors end-to-end with the underlying model. This not only improves
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the obtained uncertainty estimates but also enables optimizing application-specific objectives
without losing the provided guarantee.

Besides our work on robustness or uncertainty, we also address the problem of 3D shape
completion of partially observed point clouds. Specifically, we consider an autonomous driving
or robotics setting where vehicles are commonly equipped with LiDAR or depth sensors and
obtaining a complete 3D representation of the environment is crucial. However, ground truth
shapes that are essential for applying deep learning techniques are extremely difficult to obtain.
Thus, we propose a weakly-supervised approach that can be trained on the incomplete point
clouds while offering efficient inference.

In summary, this thesis contributes to our understanding of robustness against both input
and weight perturbations. To this end, we also develop methods to improve robustness
alongside uncertainty estimation for safe deployment of deep learning methods in high-stakes
applications. In the particular context of autonomous driving, we also address 3D shape
completion of sparse point clouds.



Zusammenfassung

Moderne Methoden des maschinellen Lernens, vor allem basierend auf tiefen neuronalen Net-
zen, werden zunehmend in sicherheitskritischen Anwendungen wie dem autonomen Fahren
oder der medizinischen Diagnose eingesetzt, bei denen falsche Entscheidungen einen sig-
nifikanten Einfluss auf das Leben von Menschen haben können. Leider werden neuronale
Netze typischerweise nur im Hinblick auf ihre Generalisierungsfähigkeit bewertet, zum Beispiel
anhand ihrer Genauigkeit auf einem festen Datensatz. Insbesondere im Hinblick auf poten-
ziell bösartiger Nutzer, eine veränderte Verteilung der Eingaben, sowie Quantisierung und
Operation auf unzuverlässiger Hardware ist dies unzureichend, um den sicheren Einsatz zu
gewährleisten. Daher wird in aktuellen Arbeiten zusätzlich die Genauigkeit dieser Modelle
auf potenziell manipulierten oder verrauschten Eingaben sowie nach entsprechender Quan-
tisierung für anwendungsspezifische Hardware in Betracht gezogen. In solchen Szenarien ist es
außerdem wichtig, zuverlässige Schätzungen der Unsicherheit dieser Modelle zu erhalten. Die
folgende Arbeit befasst sich mit drei Aspekten der Robustheit sowie der Unsicherheitsschätzung
von tiefen neuronalen Netzen: Zunächst befassen wir uns mit sogenannten Adversarial Examples,
welche die Genauigkeit von Modellen durch kleine Änderungen der Eingaben erheblich re-
duzieren können. Daraufhin schauen wir uns Störungen der Gewichte von neuronalen Netzen
an, insbesondere bezogen auf Bitfehler in quantisierten Gewichten. Dies ist relevant für den
Einsatz dieser Modelle auf spezialisierter Hardware, sogenannten Beschleunigern. Letztendlich
nutzen wir Unsicherheitsschätzungen, um die Robustheit solcher Modelle zu verbessern und
statistische Garantien für deren sicheren Einsatz zu erhalten.

Im Einzelnen studieren wir die Existenz von Adversarial Examples im Bezug auf die
zugrunde liegende Mannigfaltigkeit der Daten. In diesem Kontext untersuchen wir zudem
das Lernen auf Adversarial Examples, sogenanntes Adversarial Training, was in der Regel zu
Genauigkeitsverlust führt. Wir zeigen, dass Adversarial Examples die Mannigfaltigkeit in
meist orthogonaler Richtung verlassen. Während wir keinen direkten Zielkonflikt zwischen
Genauigkeit und Robustheit gegen Adversarial Examples finden, trägt dies zu einer höheren
Beispielkomplexität und Überanpassung von Adversarial Training bei. Mithilfe einer neuen
Metrik für die Flachheit der Fehlerfunktion bezüglich Störungen in den Gewichten des Mod-
ells zeigen wir, dass Überanpassung durch ein zu scharfes Minimum in der Fehlerfunktion
herbeigeführt wird. Tatsächlich finden wir eine klare Korrelation zwischen der gemessenen
Flachheit und der Robustheit.

Ferner untersuchen wir zufällige sowie zielgerichtete Bitfehler in quantisierten Gewichten
von neuronalen Netzen. In Beschleunigern treten Bitfehler zufällig im Speicher auf, wenn
die Spannung reduziert wird, um Energie zu sparen. Wir benutzen eine robuste Quan-
tisierungsmethode, beschränken die Größe der Gewichte und injizieren Bitfehler während
des Trainings, um die Robustheit gegen derartige Bitfehler zu verbessern und somit die En-
ergieeffizienz ohne Hardwareänderungen zu erhöhen. Im Gegensatz dazu können Bitfehler
auch zielgerichtet durch einen Angreifer provoziert werden. Derartige Bitfehler können die
Genauigkeit empfindlich reduzieren. Wir entwickeln eine neue Methode, um besonders bösar-
tige Bitfehler zu berechnen und diese Bedrohung besser studieren zu können. Daraufhin
verwenden wir diese Attacke während des Lernens, um die Robustheit zu erhöhen und damit
die Sicherheit von Beschleunigern zu verbessern.

Schließlich betrachten wir die Robustheit von neuronalen Netzen im Kontext von Un-
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sicherheitsquantifizierung. Wir entwickeln ein kalibriertes Adversarial Training, indem wir
neuronale Netze dazu zwingen, Adversarial Examples mit höherer Unsicherheit zu klassi-
fizieren. Dadurch können diese sowie verrauschte Eingaben oder Beispiele außerhalb des
gelernten Konzepts anhand der assoziierten Unsicherheit detektiert und abgelehnt werden.
Das erlaubt es uns, die Robustheit zu erhöhen, ohne signifikante Verluste der Genauigkeit
hinnehmen zu müssen. Allerdings bieten auch derart robuste Modelle keine Garantie für
entsprechende Genauigkeit in der Praxis. Arbeiten zu Conformal Prediction begegnen diesem
Problem durch die Vorhersage mehrerer Klassen pro Eingabe. Zusätzlich wird garantiert, dass
die wahre Klasse mit benutzerdefinierter Wahrscheinlichkeit in dieser Menge enthalten ist.
Jedoch wird Conformal Prediction nach dem Training angewandt, sodass sich das Modell
während des Trainings nicht auf diese Methodik einstellen kann. Durch unser Conformal
Training beheben wir dieses Problem, indem wir Conformal Prediction in den Lernprozess
integrieren. Dies verbessert nicht nur die entsprechenden Unsicherheitsvorhersagen, son-
dern erlaubt es uns auch anwendungsspezifische Fehlerfunktionen während des Trainings zu
optimieren, ohne die entsprechende Garantie zu verlieren.

Neben unserer Arbeit zur Robustheit und Unsicherheit neuronaler Netze befassen wir
uns auch mit der Rekonstruktion von 3D-Formen von unvollständigen Punktwolken. Im
Kontext von autonomen Fahrzeugen oder Robotern ist es entscheidend, eine vollständige
dreidimensionale Repräsentation der Umgebung zu erhalten. In der Praxis wird dies oft durch
LiDAR- oder Tiefensensoren ermöglicht. Allerdings ist es schwierig, die für neuronale Netze
nötigen Grundwahrheiten, d.h., vollständigen Formen von relevanten Objekten der Umgebung,
zu erhalten. Daher entwickeln wir eine Methode, die nur mit Wissen über die Objektkategorie,
also mit schwacher Überwachung, die Rekonstruktion solcher Objekte lernen kann.

Zusammenfassend trägt diese Arbeit zu unserem Verständnis von Robustheit gegenüber
Änderungen in den Eingaben und Gewichten bei. Außerdem schlagen wir Methoden zur
Erhöhung der Robustheit und verbesserter Quantifizierung von Unsicherheit vor, die den
sicheren Einsatz von neuronalen Netzen in sicherheitskritischen Anwendungen gewährleisten
sollen. Im konkreten Fall von autonomen Fahrzeugen entwickeln wir zusätzlich eine Methode
für die 3D-Rekonstruktion von Punktwolken mit schwacher Überwachung.
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Deep learning is increasingly used in high-stakes applications. For example, in au-
tonomous driving, other traffic participants are not only detected, but their size
and position are estimated to safely navigate through complex situations [JGBG20].

These components often leverage recent progress in deep learning for 3D detection and re-
construction from cameras or LiDAR sensors [GLU12]. In medical imaging or diagnosis
[GvGS16, GPC+16, LKB+17, KGC+18], deep learning is used to provide or help with diagnosis
and select appropriate treatments, ranging from simple treatments for minor conditions to
potentially invasive ones for severe diseases such as cancer. In these cases, wrong decisions
can have tremendous impact on human lives. This motivates a recent shift in evaluation, from
looking purely on generalization, e.g., accuracy on the test set in image classification, to addi-
tionally understanding performance on potentially malicious or corrupted inputs. For example,
how does the model perform on noisy inputs or when facing malicious actors that intend
to mislead it? Moreover, preserving performance after deployment on specialized hardware
with constraints on energy consumption, space and cost becomes increasingly important. For
example, is accuracy preserved after quantization and deployment on hardware accelerators,
even when facing hardware faults? These questions lead to evaluate the model’s robustness in
various settings in addition to plain accuracy. Furthermore, this motivates estimating uncertainty
alongside the predictions themselves. For example, does the model assign high confidence to
wrong predictions or previously unseen, potentially illogical inputs? Autonomous cars must
not malfunction due to, e.g., unexpected stickers or graffiti on street signs and need to estimate
the future trajectory of traffic participants with appropriate uncertainty [BFS18]. Similarly,
over-confidence is already a serious problem in medical diagnosis [BG08] and robustness
regarding population shift or imaging noise is necessary. Overall, studying robustness and
uncertainty in unforeseen and adversarial settings before deployment is of vital importance for
users and practitioners to develop trust into deep learning models.

This thesis focuses on robustness of deep neural networks against changes in their inputs
as well as their parameters and providing appropriate estimates of uncertainty. First, we focus
on so-called adversarial examples [BCM+13, SZS+14], imperceptibly perturbed inputs that cause
misclassification. However, we also consider distribution shifts, including random corruptions
(e.g., noise, blur, etc.) [HD19] as well as out-of-distribution examples that are entirely irrelevant
to the problem at hand. Robustness against these perturbations, usually causing devastating
accuracy drops, is a crucial prerequisite for trustworthy deep learning [Var19, HKR+20]. Second,
we consider the impact of bit errors in the network’s weights. This is highly relevant when
deploying quantized networks on special-purpose hardware, so-called accelerators [SCYE17], for
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Figure 1.1: Problems Tackled in this Thesis: After discussing deep learning for weakly-
supervised 3D shape completion in Part I, we mainly focus on robustness and uncertainty in
deep learning. Part II intends to understand adversarial examples and adversarial training,
while Part III focuses on robustness w.r.t. bit errors in the network’s weights. Finally, Part IV
proposes methods to improve uncertainty estimation alongside adversarial robustness.

low-cost inference. For example, low-energy operation of digital accelerators causes high rates
of bit errors in their memories, directly affecting the stored network weights. Moreover, the
memory is vulnerable to hardware- or software-based attacks. Here, robustness is necessary for
wide-spread adoption and safe deployment of deep learning accelerators. Finally, we investigate
how to provide meaningful uncertainty estimates alongside predictions. For example, deep
neural networks tend to assign high confidence to wrong decisions, e.g., on perturbed or
out-of-distribution examples. Besides, most deep learning techniques do not provide any
guarantees beyond empirical test accuracy. However, alongside robustness, well-calibrated
uncertainty estimates with relevant guarantees are essential for safe deployment. Altogether,
we aim to quantify, understand and improve robustness as well as uncertainty estimation in
these settings.

Besides the main focus on robustness, in the initial phase of this thesis, we also addressed
the problem of 3D reconstruction in autonomous driving. In order to obtain a complete
understanding and representation of the surrounding environment for critical components such
as path planning or mapping and localization [JGBG20], autonomous vehicles are commonly
equipped with 360 degrees LiDAR sensors [GLU12]. However, detecting and completing the
3D shapes of relevant traffic participants such as cars is extremely difficult due to sparse
and noisy point cloud observations. Unfortunately, deep learning techniques struggle with
difficult-to-obtain ground truth shapes in such settings. We aim to address this problem using
a weakly-supervised approach to 3D shape completion.

A high-level overview of the problems addressed in this thesis is provided in Figure 1.1.
Specifically, in Part I, we propose a weakly-supervised, learning-based approach to tackle
3D shape completion from sparse point clouds. Next, in Part II, we turn towards robustness
against adversarial examples, intending to understand why adversarial examples exist and how
both adversarially robust and accurate models can be trained effectively. In Part III, we switch
to studying bit errors in quantized networks and show how robustness contributes to energy-
efficient and secure accelerators. Finally, in Part IV, we investigate how proper uncertainty
estimates allow rejecting a wide-range of adversarial, corrupted or out-of-distribution examples
and how to obtain guarantees alongside these uncertainty estimates.
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(a) ShapeNet (Synthetic) (b) KITTI (Real)

(c) Reference Shapes
(d) 3D Shape Completion in LiDAR Scans

Part I, Chapter 3:

Figure 1.2: Weakly-Supervised 3D Shape Completion Problem: We propose a deep learning
approach to complete shapes from noisy point clouds without access to the corresponding
ground truth shapes, e.g., for autonomous driving (d). This allows us to learn shape completion
not only on synthetic (a) but also on real data (b), where ground truth shapes are unavailable,
only by requiring a set of held-out reference shapes of known object class (c). In our amortized
maximum likelihood approach, we first learn a shape model on the reference shapes before
learning to align this shape model with the actual observations for efficient inference.

1.1 3D Shape Completion under Weak Supervision

Corresponding to an early phase of this thesis, we first consider a special-case of 3D recon-
struction, namely 3D shape completion from point clouds. This is a fundamental problem in
3D computer vision [FH13] that recently received considerable attention due to promising
applications in robotics or autonomous driving [JGBG20]. As depicted in Figure 1.2 (a,b), 3D
shape completion describes the problem of predicting a complete shape given an incomplete
and noisy point cloud observation. In autonomous driving or robotics, for example, LiDAR
sensors and depth cameras are used to provide point clouds of the surrounding environment,
c.f. Figure 1.2 (d). Obtaining a complete 3D representation of the environment from this point
cloud is crucial for safety and many sub-tasks such as mapping or path planning. This also
entails shape completion of particularly relevant objects such as cars, trucks or pedestrians.

Classical approaches to this problem are often data-driven, splitting the problem into shape
retrieval and shape-to-observation alignment [SKAG15]. While later data-driven approaches
avoid the shape retrieval part by learning a shape model from synthetic reference shapes
[NXS12, DPRR13, HSP14, ESL16], see Figure 1.2 (c), alignment remains a complex optimization
problem that makes inference very slow. This is addressed in recent work, e.g., [FMAJB16,
DQN17], which leverages deep learning to learn shape completion end-to-end, assuming full
access to the incomplete point clouds and the corresponding completed shapes. Unfortunately,
obtaining annotations with complete shapes is extremely time-consuming and error-prone.
Instead, weaker notions of labels such as bounding boxes are often readily available. Thus, we
develop a learning-based approach that only requires knowledge of the object categories for
training and remains efficient at test time.

Contributions: In Chapter 3 of this thesis, we propose an amortized maximum likelihood
approach towards efficient, weakly-supervised 3D shape completion. Based on a learned shape
prior, alignment is formulated as a maximum likelihood problem, which we learn to solve
for efficient inference. To this end, we introduce a loss purely operating on the (sparse)
observation, not requiring the corresponding ground truth shapes. This allows us to learn
3D shape completion in challenging real-world situations, e.g., on LiDAR or Kinect scans
[GLU12, YRM+19], while offering fast inference.
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Figure 1.3: Robustness and Uncertainty Problems: Left: We consider both perturbations in
the inputs (Part II) and the weights (Part III). These can be adversarial, i.e., maliciously crafted,
or random. We also study uncertainty estimation for (adversarially robust) models (Part IV),
either using the predicted confidence as uncertainty estimate or allowing the model to predict
confidence sets instead. Right: Illustration of input perturbations, weight perturbations, and
uncertainty using a 2D and two-class classification problem ( vs. ), see text for details.

1.2 Robust and Uncertainty-Aware Deep Learning

Turning to the main topic of this thesis, our work on robustness and uncertainty estimation
for deep learning is summarized in Figure 1.3 (left). First, we consider a deep neural network
f , taking an input x and weights w to make a prediction f (x; w), e.g., classification scores in
an image recognition problem. While such models obtain high accuracy on held-out test sets,
[BCM+13, SZS+14] demonstrate that slightly perturbed inputs x + δ can alter the prediction
significantly, often changing the predicted class. In Figure 1.3 (right), this is illustrated as
moving the example x + δ (red) beyond the model’s decision boundary (black), but not crossing
the true one (orange). Next, we consider robustness in terms of the weights: While the examples
remain unchanged, the decision boundary changes depending on a weight perturbation w + ν
(magenta). In both cases, perturbations can be random or adversarially chosen to fool the
model. Finally, we consider uncertainty estimation given the model’s prediction. In practice,
this involves estimating a per-example confidence indicating the certainty of the model in its
prediction, e.g., when facing input perturbations. More intuitively, however, this can be thought
of as an uncertainty in the model’s decision boundary (blue).

1.2.1 Understanding Adversarial Examples and Training

Adversarial examples [SZS+14, GSS15], maliciously crafted input perturbations, can be found for
the majority of problems in computer vision and beyond. However, especially in the context of
deep neural networks, their existence is poorly understood. Early hypotheses [SZS+14, GSS15]
have been superseded by the manifold assumption: On simplistic toy examples, adversarial
examples are hypothesized to leave the underlying data manifold [TG16, GMF+18]. As this
would make training on adversarial examples, so-called adversarial training [MMS+18], more
difficult, this could also explain the observed trade-off between robustness and accuracy
[TSE+19]. The manifold assumption is also relevant regarding the recent observation that
adversarial training is prone to severe overfitting [RWK20]. This is problematic because
robustness does not generalize well to a held-out test set despite robustness on the training set
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Figure 1.4: Understanding Adversarial Examples and Training: Left: We view adversarial
examples in the context of the underlying data manifold and show that “regular” ones
leave this manifold. However, adversarial examples can also be constrained to the manifold,
corresponding to more meaningful perturbations. Right: Adversarial training improves
robustness but suffers from severe robust overfitting where the test robustness does not
continuously decrease throughout training. We study this phenomenon through the lens of
flatness in the robust loss landscape w.r.t. weight perturbations.

continuously decreasing throughout training.
We confirm this hypothesis by studying adversarial examples in the context of the under-

lying data manifold on both synthetic and real datasets. As illustrated in Figure 1.4 (left),
we also confirm that adversarial examples can be constrained to the manifold, as previously
done on a simplistic toy dataset in [GMF+18]. Regarding the robustness-accuracy trade-off of
adversarial training, [SZC+18, TSE+19] suggest that this trade-off is inherent. These results are,
however, not unquestioned [RGB16, GMF+18]. By distinguishing between off- and on-manifold
adversarial examples, we intend to reconcile these different perspectives. Similarly, we study
robust generalization and the negative impact of robust overfitting, demonstrated in Figure 1.4
(right), from the viewpoint of the loss surface. Flat minima, where the loss does not change
significantly with small weight perturbations, are known to be beneficial for generalization
[NBMS17, KMN+17, JNM+20]. Intuitively, flatter minima reduce the generalization gap be-
tween training and test examples, as illustrated in Figure 1.4 (right). Recent work [WXW20b]
argues that encouraging flatness in the robust loss surface also improves adversarial robust-
ness. However, flatness is only assessed visually. With our work, we intend to improve our
understanding of robust overfitting and how it can be avoided.

Contributions: In Chapter 4, we demonstrate that regular adversarial examples indeed
leave the underlying manifold, often in an orthogonal direction. However, we can also
constrain adversarial examples to the manifold, resulting in more meaningful perturbations
(c.f. Figure 1.4, left). Training on such on-manifold adversarial examples is shown to improve
generalization. While our results indicate that there is no inherent robustness-accuracy trade-
off, regular adversarial training is found to increase sample complexity. This also contributes
to severe robust overfitting, as discussed in Chapter 5. In order to better understand this
phenomenon, we propose an average- and worst-case measure of flatness in the robust loss
landscape w.r.t. weight changes. We show that robust overfitting is caused by converging to
sharp minima. More broadly, we show that there is a clear relationship between flatness and
superior robust generalization.
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Chapter 6: Accelerator from [CSC+19]: Profiled (random) bit errors for 2 chips:

Figure 1.5: Random Bit Error Robustness for Accelerators: Left: Accelerators, e.g., the one
from [CSC+19] shown here, usually feature a large portion of memory arrays for the model’s
weights. Right: Reducing energy consumption by reducing voltage, however, makes the
memory unreliable, leading to bit errors. This is shown exemplarily for two memory arrays
from different chips, where yellow indicates a high-probability of bit flips. Thus, improved
robustness against such bit errors translates to improved energy-efficiency.

1.2.2 Improving Robustness Against Weight Perturbations

Special-purpose hardware for inference, so-called accelerators [CES16, nvd], reduce cost, space
and energy-consumption compared to mainstream hardware. An example [CSC+19] is shown
in Figure 1.5 (left). The largest component is the memory to store the model’s weights.
Thus, reading, writing and moving weights constitutes a dominant part of the overall energy-
consumption. Recent work [KHM+18a, KOY+19] tried to reduce energy-consumption by
reducing the memory voltage. Unfortunately, this leads to unreliable memory operations
causing bit errors in the weights, see Figure 1.5 (right). These bit errors are handled with co-
design approaches, i.e., a combination of hardware mitigation and neural network architecture
or training strategies. In a parallel line of work, researchers also study the robustness of deep
neural networks to maliciously injected bit errors [RHF19a, HRL+20], e.g., using hardware- or
software-based memory attacks [KDK+14, MOG+20]. Overall, robustness against random and
adversarial bit errors is crucial for energy-efficient and secure accelerators.

Unfortunately, co-design methods require extensive hardware knowledge, including the
infrastructure to experimentally determine the induced bit errors of a specific chip. This also
results in poor generalization across different chips or even voltage-levels, corresponding to
different bit error rates. Pure hardware mitigation strategies [SWS+16, RWA+16, MUDV17,
CSC+19, CH21a], however, add space and energy overhead while classical error correction
is not applicable for high bit errors rates. To address these problems, we follow a purely
software-based approach by training more robust deep neural networks. Considering the
threat of adversarial bit errors, existing attacks [RHF19a, RHL+20] are inefficient and inflexible.
Moreover, previous defenses [HRL+20] have been broken [RHL+20]. We show that a new and
more efficient attack also allows improving adversarial bit error robustness during training.

Contributions: In Chapter 6, we follow a software-based approach for improving random
bit error robustness through a robust quantization scheme, weight clipping during training as
regularization and random bit error training. Our approach generalizes across chips and voltages,
as validated on profiled bit errors of several real chips for which we are able to quantify the
possible energy savings. Furthermore, we consider random bit errors in inputs and activations
which are, at least temporarily, also stored on the unreliable memory. We also benchmark
these methods against our newly proposed adversarial bit error attack that is shown to be more
efficient and effective than related work [RHF19a, RHL+20]. Finally, our adversarial bit error
training is an effective strategy to improve robustness against these attacks.
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Figure 1.6: Improving Adversarial Robustness and Uncertainty Estimation: Left: Our
confidence-calibrated adversarial training enforces low confidence on adversarial examples during
training. This behavior is extrapolated to previously unseen adversarial or out-of-distribution
examples, allowing to easily reject them without significant drop in accuracy. Right: Conformal
prediction allows the model to predict confidence sets C(x) of classes. Uncertainty is intuitively
quantified by the number of predicted classes |C(x)|, so-called inefficiency. Our conformal
training allows training conformal predictors jointly with the model instead of being applied
after training. At the same time, it enables optimizing a wide-range of special-purpose losses
L defined directly on the confidence sets, e.g., to influence their composition.

1.2.3 Improving Adversarial Robustness and Uncertainty Estimation

Uncertainty is usually estimated per-example, by providing a confidence in the prediction
or a confidence set of possible classes. The former is a simple measure used extensively
for adversarial example and out-of-distribution detection [HG17a, MLW+18, LLLS18b]. This
improves the robustness-accuracy trade-off and achieves robustness against various types of
adversarial examples, which is difficult for adversarial training [TB19, MWK20]. Unfortunately,
many detectors have been broken repeatedly [CW17a, YBTV21, BHP+21]. Thus, [HMD19,
HAB19] incorporate this idea into training by explicitly enforcing low confidence on out-
of-distribution examples. These works show that deep neural networks are able to easily
extrapolate this behavior beyond the examples seen during training. We intend to reconcile the
shortcomings of detection schemes and adversarial training by encouraging low confidence on
adversarial examples during training, as illustrated in Figure 1.6 (left).

Unfortunately, many robust deep neural networks do not provide any guarantee beyond
empirical performance. In the context of uncertainty estimation, conformal prediction [GVV98,
VGS05] allows the model to predict confidence sets containing multiple classes instead of
making a single class prediction. These confidence sets are constructed such that the true class
is guaranteed to be included with user-specified probability. Conformal prediction is widely
applicable as a post-training calibration step [RSC20], e.g., to large-scale image recognition
problems [ABJM21]. However, conformal predictors are usually hand-designed for different
objectives and guarantees [BAL+21] and there is an inherent discrepancy between training and
calibration: Deep neural networks trained with cross-entropy loss might not be optimal for
the used conformal predictor. As shown in Figure 1.6 (right), we address both limitations by
training the model through the conformal predictor, without losing its guarantee after training,
but allowing arbitrary losses on confidence sets to be optimized.

Contributions: In Chapter 7, we introduce confidence-calibrated adversarial training which biases
the model towards low-confidence predictions on adversarial examples seen during training,
see Figure 1.6 (left). In contrast to standard adversarial training, the model can extrapolate
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this behavior to previously unseen adversarial attacks. By rejecting low-confidence examples,
robustness also generalizes to corrupted examples and out-of-distribution examples and the
robustness-accuracy trade-off improves significantly. For evaluation, we propose a per-example
worst-case evaluation across many adaptive adversarial attacks, as also adopted by standard
benchmarks [CH20c, YBTV21].

Chapter 8 introduces conformal training, a method for end-to-end training of deep neural
networks and conformal predictors. By differentiating through the conformal predictor, we
can optimize arbitrary objectives defined directly on the confidence sets, c.f. Figure 1.6 (right).
After training, we re-calibrate to obtain the original statistical guarantee. This approach is
shown to reduce inefficiency, i.e., the average size of confidence sets representing the model’s
uncertainty. We can further improve on various application-specific metrics that standard
conformal predictors cannot easily optimize.

1.3 Outline

This thesis is divided into nine chapters, organized in four parts:

Chapter 2, Related Work: We review previous work directly related to the topics discussed in
this thesis. These include, e.g., secure deep learning in general and adversarial robustness
as well as uncertainty estimation in particular. Moreover, we discuss related work on
robustness for accelerators and quantization and recent work on conformal prediction.

Part I, Deep Learning for 3D Shape Completion

Chapter 3, Learning 3D Shape Completion under Weak Supervision: We present an efficient,
weakly-supervised and learning-based approach to 3D shape completion. Specifically, we
use deep neural networks to learn a powerful shape prior, which is subsequently used
for completion in an amortized maximum likelihood approach. Our method can be trained
on real-world datasets as no supervision besides object category is required.

This chapter corresponds to the IJCV publication [SG20] of the same title which represents
a significant extension of previous work [SG18b] based on the master thesis [Stu17], see
Section 3.1 for further details.

Part II, Understanding Adversarial Examples and Training

Chapter 4, Disentangling Adversarial Robustness and Generalization: We study adversar-
ial examples w.r.t. the underlying data manifold, showing that they leave the manifold.
We also conclude that adversarial robustness is not inherently in conflict with accu-
racy, but adversarial training exhibits higher sample complexity. Moreover, on-manifold
adversarial examples can be used during training to improve accuracy.

This work corresponds to the CVPR 2019 publication [SHS19] with the same title. It was
also presented at the Workshop on Uncertainty and Robustness in Deep Learning (UDL)
2019 and the Heidelberg Laureate Forum (HLF) 2019.

Chapter 5, Relating Adversarially Robust Generalization to Flat Minima: In this chapter, we
intend to understand how different variants of adversarial training improve robustness
and avoid robust overfitting. To this end, we relate robust generalization to flat minima
in the robust loss surface w.r.t. weight changes.
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This chapter corresponds to the ICCV 2021 paper [SHS21] with the same title. Short ver-
sions were presented at the Workshop on Uncertainty and Robustness in Deep Learning
(UDL) 2021, the Workshop on Adversarial Learning Methods for Machine Learning and
Data Mining (AdvML) 2021, and the Workshop on Adversarial Machine Learning in
Real-World Computer Vision Systems and Online Challenges (AML-CV) 2021. Invited
talks were given at the Max Planck Institute for Mathematics in the Sciences and the
University of California Los Angeles as well as at the University of Cagliari.

Part III, Improving Weight Robustness

Chapter 6, Random and Adversarial Bit Error Robustness: This chapter shows how bit error
robustness of quantized deep neural networks can improve energy-efficiency and security
of hardware accelerators. We use robust quantization, weight clipping and random or
adversarial bit error training to improve robustness. To this end, we also propose an
efficient and effective adversarial bit error attack.

The chapter corresponds to the MLSys 2021 paper “Bit Error Robustness for Energy-
Efficient DNN Accelerators” [SCHS21a], subsumed in our work on “Random and Adversarial
Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators” [SCHS21b] which is
currently under review. This work was conducted in collaboration with IBM Research
and presented at the IBM Research Workshop on the Future of Computing Architectures
(FOCA) 2020, the Lorentz Center Workshop on Robust Artificial Intelligence (RobustAI),
the Workshop on Adversarial Learning Methods for Machine Learning and Data Mining
(AdvML) 2021, and the Workshop on Adversarial Machine Learning in Real-World
Computer Vision Systems and Online Challenges (AML-CV) 2021 where it was recognized
as distinguished paper. It was also part of the Qualcomm Innovation Fellowship Europe
2019 and an invited talk was given at TU Dortmund.

Part IV, Improving Adversarial Robustness and Uncertainty Estimation

Chapter 7, Confidence-Calibrated Adversarial Training: We present confidence-calibrated ad-
versarial training which biases the model towards low-confidence predictions on adver-
sarial examples. By rejecting examples with low confidence, adversarial robustness
generalizes to unseen threat models, corrupted examples and out-of-distribution exam-
ples. This also improves accuracy compared to standard adversarial training.

The content of this chapter is based on our ICML 2020 publication [SHS20] with the
title “Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks”. This work
was presented at the Workshop on Uncertainty and Robustness in Deep Learning (UDL)
2020, the Bosch Center for Artificial Intelligence, the Qian Xuesen Laboratory of Space
Technology, and as part of the Qualcomm Innovation Fellowship Europe 2019.

Chapter 8, Learning Optimal Conformal Classifiers: We present conformal training, a way of
training model and conformal predictor end-to-end to minimize uncertainty and optimize
arbitrary application-specific losses directly defined on confidence sets. Re-calibrating
after training preserves the conformal predictor’s statistical guarantee.

This chapter is based on our ICLR 2021 paper [SDCD21] with the same title. This work
was conducted while at DeepMind and presented at UC Berkeley.

Chapter 9, Conclusion: We conclude this thesis by summarizing our key findings and dis-
cussing promising directions of future work.
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1.4 Publications

The content of this thesis has previously appeared in the following publications, ordered as
outlined above:

[SG20] David Stutz and Andreas Geiger. Learning 3D shape completion under weak supervi-
sion. International Journal of Computer Vision (IJCV), 128(5):1162–1181, 2020.

[SHS19] David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness
and generalization. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[SHS21] David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust gener-
alization to flat minima. In Proc. of the IEEE International Conference on Computer Vision
(ICCV), 2021.

[SCHS21a] David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt Schiele. Bit
error robustness for energy-efficient DNN accelerators. In Proc. of Machine Learning and
Systems (MLSys), 2021.

[SCHS21b] David Stutz, Nandhini Chandramoorthy, Matthias Hein, and Bernt Schiele. Ran-
dom and adversarial bit error robustness: Energy-efficient and secure DNN accelerators.
arXiv.org, abs/2104.08323, 2021 (under review).

[SHS20] David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversarial
training: Generalizing to unseen attacks. In Proc. of the International Conference on Machine
Learning (ICML), 2020.

[SDCD21] David Stutz, Krishnamurthy Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet.
Learning optimal conformal classifiers. In Proc. of the International Conference on Learning
Representations (ICLR), 2022.

Further contributions were made to the following works not discussed in this thesis:

[KSA+21] Iryna Korshunova, David Stutz, Alexander A. Alemi, Olivia Wiles, and Sven Gowal.
A closer look at the adversarial robustness of information bottleneck models. In Proc. of
the International Conference on Machine Learning (ICML) Workshops, 2021.

[RSS20] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial training against location-
optimized adversarial patches. In Proc. of the European Conference on Computer Vision
(ECCV) Workshops, 2020.

[GSS22] Yong Guo, David Stutz, and Bernt Schiele. Improving corruption and adversarial
robustness by enhancing weak subnets. arXiv.org, abs/2201.12765, 2022 (under review).
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In this chapter, we review literature on the interdisciplinary topics of deep learning in
computer vision as well as security and hardware accelerators. Deep learning has enabled
tremendous progress in many difficult tasks. For example, in Part I of this thesis, we

specifically discuss the use of deep learning for 3D shape completion, i.e., the reconstruction of
partly observed shapes from sparse point clouds. However, the great success of deep learning
also raises concerns regarding robustness and uncertainty in deep learning, which we focus on
in the remaining parts of this thesis, i.e., Part II, III and IV. Both topics are important, as a lack
of trust by practitioners and users can seriously hinder wide-spread adoption, especially in
high-stakes applications.

In Section 2.1, we discuss related work on 3D shape completion, also touching on research
regarding useful 3D representations and shape modeling. Subsequently, in Section 2.2, we
provide a high-level overview of robustness and uncertainty in the broader context of security
and trustworthiness in deep learning, where both topics play a crucial role. Based on this
overview, Section 2.3 specifically discusses relevant work on adversarial attacks and defenses,
also considering adversarial training and detection methods. Then, Section 2.4 switches
to weight robustness, discussing approaches to energy-efficient and secure deep learning
accelerators, i.e., specialized hardware for inference. Here, we particularly discuss related
work tackling robustness against random and adversarial bit errors in quantized weights.
Finally, in Section 2.5, we discuss two research directions in uncertainty estimation, namely
out-of-distribution detection and conformal methods.

2.1 3D Shape Completion

3D vision problems such as 3D reconstruction have a long tradition of “classical” methods
that leverage extensive geometry and domain knowledge [SCD+06]. Recently, however, deep
learning started to replace many of these methods due to the increasing availability of large
amounts of data [HLB21]. In the following, we consider a special case of 3D reconstruction:

11
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shape completion from partially observed point clouds. Such point clouds are commonly available
in autonomous driving or robotics settings due to the increased use of laser- or camera-based
depth sensors such as LiDAR and Kinect. We briefly review both optimization and learning-
based approaches to shape completion in Section 2.1.1. Subsequently, we discuss relevant work
on 3D shape priors which are commonly used for completion in Section 2.1.3 and touch on
effective shape representations for learning in Section 2.1.2.

2.1.1 Shape Completion

Following [SKAG15], classical shape completion approaches can roughly be categorized into
optimization-based methods and data-driven methods. Representative works on optimization-
based shape completion include [CT11, TOZ+11, KH13] and references therein. These methods
are, e.g., based on variational or level-set methods for optimization. Often, symmetry is
leveraged [TW05, PMW+08, ZSW+10, LA11, KAEP12]. In contrast, data-driven approaches
[PMG+05] pose shape completion as retrieval and alignment problem. While [PMG+05] allow
shape deformations, [GAGM15], use the iterative closest point algorithm [BM92] for fitting
rigid shapes. [SFCH12] additionally considers completing shapes based on individual parts.
Subsequent work usually avoids explicit shape retrieval by learning a latent space of shapes
[NXS12, BCLS13, DPRR13, HSP14, RGT+15, LDGN15, ESL16, NHT+16]. Alignment is then
formulated as an optimization task over the learned, low-dimensional latent space. In both
cases, inference is typically slow as a complex optimization problem needs to be solved. With
the recent success of deep learning, learning-based approaches are becoming more and more
popular [SGF16, REM+16, FMAJB16, SM17, DQN17, FSG17, RUBG17, HLH+17, YWW+17,
GFK+18, YRM+19, WLT20]. Strictly speaking, these are data-driven as well. However, shape
retrieval and fitting are both avoided by directly learning shape completion end-to-end, usually
on synthetic data from ShapeNet [CFG+15] or ModelNet [WSK+15]. Unfortunately, these
approaches require full supervision, i.e., access to the completed shapes during training.

In Chapter 3, we develop a learning-based approach that addresses the shortcomings of
both lines of work: While we still learn a 3D shape prior and formulate shape completion as
an optimization problem, expensive inference is avoided by learning to infer [RM15a, WL16,
RHG16]. To this end, we propose a loss that does not require full supervision. Thus, we can
train on real-world data, e.g., from LiDAR sensors [GLU12] or Kinect cameras [YRM+19], and
generalize very well. This is also in contrast to recent few-shot approaches [WH19, MTP+21]
that still need full supervision, but on few examples.

2.1.2 Shape Models

Shape priors are a core ingredient for many 3D shape completion and reconstruction methods
[DPRR13, GG15, KTCM15, RLT+20]. Originally, most approaches used hand-crafted shape
models, for example based on anchor points or part annotations [ZSSS13, ZSS14, LMHD14,
PSG+15]. Recent work, however, has shown that generative models such as variational
auto-encoders (VAEs) [KW14a] or generative adversarial networks (GANs) [GPM+14a] allow
efficiently generating, manipulating and reasoning about 3D shapes. Exemplary work includes
[WSK+15, SGF16, GFRG16, WZX+16a, SM17, LYF17, NW17, LYF17]. Beyond 3D vision, shape
priors are also heavily used in other tasks such as pose estimation [SDYT09, SDYT11, PSR13,
AME+14], tracking [LM09, MS14], segmentation [SDYT09, SDYT11, PSR13], object detection
[ZSSS13, ZSS14, SX14, PSG+15, ZPA+15] or recognition [LMHD14], to name just a few exam-
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ples. Besides the scale and quality of available shapes, we will see that shape representations
are in the center of recent research.

In Chapter 3, we utilize VAEs in order to learn shape models on ShapeNet or ModelNet.
However, as long as a low-dimensional representation with known, parametric prior is learned,
our approach is agnostic to the type of generative model used.

2.1.3 Shape Representations

For both shape completion and shape modeling, the used shape representation is a crucial
choice as it determines the complexity during training and the level of details recovered at
inference. Originally, occupancy-based voxel representations were common, as in [WSK+15,
BLRW16, WZX+16a, HLH+17, DQN17]. However, high resolutions required to predict detailed
shapes make training with 3D convolutions expensive. Thus, several representations have
been explored: (truncated) signed distance [DQN17, LSJ+17, RUBG17], point clouds [QSMG17,
FSG17, QYSG17, ADMG18, YFST18, YLF+18], meshes [LDG18, RBSB18, KJP+18, DN19], or
implicit functions [MPJ+19, PFS+19, MON+19, CZ19]. Signed distance functions, for example,
allow reconstructing sub-voxel details using marching cubes [LC87], while still predicting a
fixed resolution. The computational overhead of occupancy grids and signed distance functions
can be reduced using efficient data structures such as octrees or kd-trees [RUG17, TDB17,
HTM17, WLG+17, KL17, WLT20]. Recently, however, implicit function approaches [PFS+19,
MON+19, CZ19, SHN+19, GCV+19, XWC+19, NG21] have become extremely popular, often
combined with differentiable rendering [LZP+20, YKM+20, NMOG20]. The idea is similar to
signed distance functions. However, instead of predicting a fixed grid of distances, a distance
function is learned that can be evaluated at arbitrary 3D points, see [TFT+20, DL21] for an
overview. All of these representations are of utility in 3D reconstruction in general, independent
of the specific task and we refer to several surveys [ICNK17, ASS+18, BYW+20, GaWH+21]
for details.

In Chapter 3, we use truncated signed distance functions alongside occupancy grids in
order to complete shapes with sub-voxel details. This can be seen as an early pre-cursor
to nowadays implicit representations [MPJ+19, PFS+19, MON+19, CZ19]. Our approach is,
however, agnostic to the used shape representation as long as our weakly-supervised loss is
adapted accordingly. In Chapter 3, we do this by generalizing signed distance functions to
sparse point cloud observations.

2.2 Robustness and Uncertainty for Secure and Trustworthy
Deep Learning

The success of deep learning in numerous vision tasks, not only 3D reconstruction, sparked
a large body of research on problems related to robustness and uncertainty alongside many
other topics surrounding machine learning security and trustworthiness. In the context of
security, for example, deep neural networks are vulnerable to a wide variety of attack vectors
[KNL+20, BGBK21], often aimed at compromising performance. In the even broader context of
trustworthiness [Var19, KR19, HKR+20], privacy concerns as well as interpretability, fairness
or causality are studied in addition to security threats. In the following, we give a high-
level overview of the three main topics of this thesis, namely adversarial robustness, weight
robustness and uncertainty estimation, and embed them in the larger context of security and
trustworthiness.
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Adversarial Robustness: Despite adversarial examples already being reported in [DDM+04,
LM05], they received considerable attention after their “re-discovery” in [BCM+13, SZS+14].
In the security community, adversarial examples are also known as evasion attacks, which
are extensively studied, e.g., in the context of network security [HPK01]. Early work on
adversarial examples considers very specific problems such as spam filtering [WW04, NBC+08]
or malware detection [FSP+06, BCM+13]. While [SZS+14] originally considered “imperceptible”
adversarial perturbations, recent work also focuses on related robustness properties such
as “natural” corruptions [HD19, HD19, GRM+19] or (adversarial) transformations [ETSM17,
XZL+18, AAG19]. Evasion attacks can be constructed for many machine learning methods
besides neural networks, including logistic regression [FXMY14], support vector machines
[ZKTX12], boosted decision trees [AH19, WZC+20], Gaussian processes [GPSB18] or k-nearest
neighbors [SW19, SW20]. In this thesis, however, we are mostly concerned with deep neural
networks. Moreover, adversarial examples can be found for many vision tasks and beyond
[CW18, ZSA19, HP20], ranging from recognition, over object detection [LSFF17] and semantic
segmentation [FKMB17, CANK17] to 3D vision problems [XQL19, LCY+20, KHNY21], to name
just a few. Throughout this thesis, we consider the task of image classification. As we tackle
adversarial robustness in both Part II and IV, we provide a detailed discussion in Section 2.3.

Weight Robustness: In contrast to the model’s inputs, its weights are generally not exposed
to the user, leaving little room for malicious manipulation. Nevertheless, various types of
backdooring and trojaning attacks [JZJ+18, DS20, RHF20] manipulate the weights in order
to integrate “hidden”, potentially malicious behavior. Moreover, weight robustness becomes
relevant for model deployment: [SSH15, MAA+16, MDI19, ABvB+20] study the impact of
quantization errors. More recently, the deployment on special hardware exposes the weights to
hardware faults or attacks. For example, [KDK+14, MOG+20] demonstrate bit-level attacks on
the memory of digital accelerators. Moreover, memory faults also occur in [GKKR17, GKB+19]
when optimizing the power consumption by lowering voltage. Finally, works such as [NSY92,
CMMR94, DVK98] also consider robustness to various types of structural network faults, e.g.,
removed neurons or weights. In Part III, we address both random and adversarial bit errors
in the memory and show that more robust models contribute to secure and energy-efficient
accelerators. We review relevant research on these topics in Section 2.4. Furthermore, Part II
shows that weight robustness can have unexpected benefits in terms of improving (adversarially
robust) generalization [JNM+20, WXW20b, FKMN21].

Uncertainty Estimation: Not only adversarial examples, but known or unknown distribution
shifts [QCSLS09, WGS+21, YZLL21] in general, demonstrate that recent deep learning methods
provide no or very unreliable uncertainty estimates alongside their predictions. In practice,
however, proper uncertainty estimates are crucial, for example for detecting out-of-distribution
examples [NYC15, HG17a, SLH+21]. Similarly, uncertainty plays a key role in anomaly, novelty,
and outlier detection [AY01, HA04, PCCT14, WBH19, RKV+21, PSCvdH21], also see [YZLL21].
This sparked extensive research on improving uncertainty estimates, giving rise to Bayesian
approaches [Qaz96, PEM01, WT11, BCKW15, GG16, KHH20a, KHH20b, WRV+20, KHH20c,
KHH21], ensemble techniques [Hes96, LPB17, WTB20, WSTJ20, HJF+21], data augmentation
methods [HMKS19, TCB+19, MKH19, HMC+20, WJM+20, WJM+21] and generative models
[Bis93, NMT+19a, NMT+19b], see [APH+21, GTA+21] for detailed surveys. Recently, confor-
mal methods [GVV98, VGS05, RSC20, ABJM21] also received considerable attention as they
promise to provide statistical guarantees on top of intuitive uncertainty estimates. We address
uncertainty estimation in the context of adversarial robustness, out-of-distribution detection
and conformal prediction in Part IV and review the most relevant related works in Section 2.5.
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Security and Privacy: Besides adversarial robustness or weight robustness, various other
security and privacy issues have been raised recently. On the security side, data poisening
or backdooring attacks intend to integrate malicious behavior into models [RNH+09, BNL11,
BNaL12, CLL+17, LMA+18, LZS+18, ZGJ+18, SHN+18, JZJ+18, DS20, GKGL20], sponge at-
tacks intend to increase inference time [SZB+21], or adversarial re-programming can be seen
as a resource stealing attack by maliciously re-purposing a model to perform a different task
[EGS19]. Regarding privacy, membership inference attacks reveal private training examples
[SRS17, SSSS17, RRLM18, CLE+19, SeSM19, LF20, CYZF20, SSZ21, ROF21] or model stealing
allows “copying” the functionality of commercial models without consent [TZJ+16, OAFS18,
WG18, dSBB+18, RK20, OSF19, OSF20, KTP+20, JCB+20, TMWP21, KPQ21]. Both are also
relevant from an intellectual property perspective where backdooring mechanisms have been
adapted to “watermark” deep learning models [ABC+18, GP18, RCK18, MPT20, LWB21]. In
many cases, there is an ongoing arms race between attacks and defenses [PMSW18].

Trustworthiness: Security and privacy are just individual ingredients in developing trustwor-
thy deep learning models [Var19, KR19, HKR+20]. Alongside reliable uncertainty estimates
[SOF+19], additional topics include interpretability [DVK17, GBY+18, Rud19], fairness and
ethics [BHN19], or causality [Pea19]. The negative impact of not addressing these problems
has already been demonstrated in various applications, e.g., in the form of deep fakes [CC18,
AFG+19, YSAF21] or language model toxicity [WGU+21]. However, it is generally agreed that
trust requires appropriately addressing all of these topics. Thus, recent work started jointly
tackling some of these problems: For example, [GAZ19, NADL19, KSJ19, SKM+20, AMH20]
study interpretability in conjunction with adversarial robustness. Similarly, adversarial ex-
amples are used in privacy settings [JG18b], differential privacy [Dwo06] can be used for
adversarial robustness [LAG+19], and trade-offs between robustness and privacy are consid-
ered in [Hay20, HBK22]. Similar work exists at the intersection of fairness and robustness
[XLL+21, NDS+21]. Overall, this illustrates the complexity of deploying deep learning applica-
tions while taking into account human users, potential misuse and the impact on society.

For this thesis, many of the above-mentioned problems are out-of-scope. However, the
problems we address, i.e., adversarial robustness, weight robustness and uncertainty estimation,
represent key challenges that need to be solved as part of developing secure and trustworthy
deep learning techniques for high-stakes applications. Thus, in the following sections, we
specifically discuss literature on these three topics.

2.3 Adversarial Robustness

Adversarial examples pose a severe threat to deployed deep learning systems. In the following,
we discuss existing work on developing neural networks that are robust against such adversarial
perturbations. To this end, we review several adversarial attacks and defenses on images, with
specific focus on adversarial training [GSS15, MMS+18] and detection of adversarial examples.
In the context of adversarial training, we also discuss the generally observed trade-off between
accuracy and robustness [TSE+19] as well as overfitting issues [RWK20]. For further references,
we refer to recent surveys in [AM18, BR18, YHZL19, XML+20, SN20, CAB+20].

2.3.1 Adversarial Attacks

In computer vision, the actual adversarial perturbation is usually constrained, e.g., using
some Lp norm, to make sure that the (true) label is preserved. In this thesis, we partic-
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ularly focus on these Lp-constrained, often imperceptible, adversarial examples in an im-
age recognition setting. Such Lp-constrained adversarial examples have been reported for
numerous tasks in computer vision [TTV16, CZC+17, CANK17, LSFF17, KFS18, XYL+19,
XQL19, XQL19, WZYS19, SKM+20, BCL+20, HGXL21]. However, we note that other formu-
lations exist, especially for other modalities such as text, speech, graphs or tabular data
[DLT+18, ZAG19, BRA+19, ZSA19, HP20, SYO+18]. We follow common practice and catego-
rize adversarial attacks by the adversary’s knowledge: white-box attacks assume full access to
the model, while black-box attacks assume limited access, e.g., only to the model’s predictions.

White-Box Attacks: The original adversarial attacks reported for deep neural networks are
white-box attacks that utilize the model’s gradient in order to compute adversarial pertur-
bations in one [GSS15] or multiple steps [SZS+14]. These attacks usually include a hard
constraint forcing the Lp norm of the perturbation to be ≤ϵ or minimize the Lp norm without
explicit constraint [MFF16, CW17b, LZLY17, RGPA21]. Replacing the Lp norm with perceptual
metrics [ZIE+18, WBSS04] has also been studied [JMGD19, LSF21, GMVP21, ZLL20b]. Build-
ing on the framework proposed in [MMS+18], these gradient-based approaches have been
extended in numerous ways, e.g., additionally including a momentum term [DLP+18], random
step sizes [CGG+20], automatic step size [CH20c], different objectives [RGB17] or optimizers
[UOKvdO18], additional attention [JK21] and many more [GUQ+19, ZCR19, BRK+19]. Most
are applicable in a targeted or untargeted fashion, i.e., with or without an explicit target label.
While attacks for L∞ and L2 are most commonly used, there are also successful attacks for
L1, L0 or Lp in general [PMJ+16, BRK+19, MMF19, PRBB21]. However, L0 or L1 attacks can be
more difficult from an optimization perspective [PMJ+16, CH21c]. Overall, implementation
details have been shown to be important and many variants adapted to specific defenses have
been proposed [ZYJ+19, WRK20, ZXH+20, PL21].

Large parts of this thesis, Chapter 4, 5 and 7 in particular, utilize the gradient-based attack
of [MMS+18] and its variants [DLP+18, CH20c] to evaluate adversarial robustness. Chapter 7
additionally extends [MMS+18, DLP+18] using a backtracking scheme and an objective tailored
to maximize the confidence of adversarial examples.

Black-Box Attacks: The simplest way to compute attacks without access to the model are
transfer attacks [PMG16, PMJ+16, PMG+17]: adversarial examples computed for a known,
accessible model are frequently also adversarial for other, similar models. This can be
made practical for attackers by training a substitute model or directly stealing one [OAFS18,
WG18, RK20]. Since, transferability of adversarial examples has been studied extensively
[LCLS17, TPG+17, DMP+18, XZZ+19, DPSZ19, DMP+19, XZZ+19, WWX+20]. Alternatively,
early black-box attacks are generally based on sampling perturbations and querying the target
model [BRB18, KH18, ACFH20, GGY+19, LJL+20, SHT20, CH20a, BDK19, LJC+21]. Gradient-
based approaches can also be applied by approximating the gradients through finite differ-
ences [CZS+17, IEAL18, IEM19, CLC+19, CJW20, ZCWL20, CG20], sign-based approaches
[AO20, CSC+20, CSC+20, CZHW20], or Bayesian optimization [SSWK21], again using queries.
Here, query-efficiency is crucial for the attacker. Thus, recent work focuses in particular on
minimizing the number of queries [BHLS18, TTC+19, SCET20, CAS+20b, YMH21, MFM21,
XLG+21, DCP+21, WSS+21]. Black-box attacks are useful in evaluation to overcome gradient
obfuscation or non-differentiability of defenses [ACW18, QZZ+20, CRH20].

In Chapter 4 we study the robustness-accuracy trade-off also for transfer attacks and
Chapter 7 adapts several black-box attacks [NK17, IEAL18, KH18, CH19, ACFH20] to our
confidence-calibrated adversarial training for thorough evaluation.

Other Attacks: Besides these Lp-constrained attacks, many other types of adversarial examples
have been studied. For example, adversarial patches or frames [BMR+17, KZG18, ZZRP19,
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RSS20] allow unrestricted changes in a small part of the image. These are commonly also
printed or physically realizable [BMR+17, JM19, LSK19, XZL+20, LWL+20]. However, more
unconstrained adversarial examples are also possible [NYC15], often based on generative
models [SSKE18, WLX+20, WK21] to craft visually more meaningful adversarial examples.
Such adversarial examples are also similar to so-called on-manifold adversarial examples
which are obtained using a generative model trained on clean images [GMF+18]. Similarly,
there are adversarial transformations [ETSM17, DMM18, XZL+18, HP18, XZL+18, AAG19] or
color/saturation/contrast changes [HP18, SSC20, ZLL20a], which are both often referred to as
“semantic” adversarial examples. All of these attacks are example-specific, however, so-called
universal adversarial examples are also studied [MFFF17, MGB19, DZGZ21].

In Chapter 4, we generalize the notion of on-manifold adversarial examples from the toy
dataset in [GMF+18] to real datasets, an idea later extended in [LTL+19, XTCZ21]. In Chapter 7,
we also evaluate robustness against various types of attacks besides Lp constrained ones in
order to obtain a more holistic evaluation of adversarial robustness.

Benchmarks: Reliable robustness evaluation usually involves an ensemble of white- and
black-box attacks. Then, the worst-case across these attacks is used for evaluation [CH20c].
More recently, these attacks are learned, considering different objectives as well as targeted
and untargeted attacks [YBTV21]. Benchmarks attempt to keep track of the quick progress1.
At the same time, toolboxes bundling adversarial attacks have been released [NST+18, DWJ19,
EIS+19, RZBB20, GXY+20] and competitions are organized [KGB+18, DFY+21]2.

In Chapter 7, we also use an ensemble of (adaptive) attacks and propose a per-example
worst-case evaluation as in standard benchmarks such as [CH20c].

Cause for Adversarial Examples: It is largely unclear why adversarial examples actually
exist. Originally, [SZS+14] found that adversarial examples are “extremely” rare negatives and
[GSS15] attributes them to the linearity in many architectures. Others [TG16, GMF+18, SSRD19]
argue against these assumptions. Today, the manifold assumption is a widely accepted theory
[SKN+18, IJA+17, PS18, SRBB19]: adversarial examples are assumed to leave the data manifold.
Moreover, it was shown that this is facilitated by models relying on non-robust features, e.g.,
spurious correlations, to boost accuracy [IST+19, YLS+19, WWHX20, SMK21, AL21].

Our work in Chapter 4 contributes to the manifold assumption by experimentally validating
it on real-world image datasets. This also lead to the notion of on- and off-manifold adversarial
examples. These insights have since been refined [XYL21, SMB21, GCJ+21] and used for defenses
[LLL+20, LLS+21], improved generalization [GQH+20], or calibration [PBZ+20].

2.3.2 Defenses Against Adversarial Attacks

There is an extremely wide variety of adversarial defenses, including regularization schemes
[LHL15, HA17, RD18, JG18a, SGOS+18, HRY19, YLW+18, CTOF20, RNR20, LCC20, YRZ+20a],
adapted architectures [NG17, ZNR17, RSCC17, LBG+18, RB19, SRPR20, XSG20], ensemble
methods [LCZH17, SHJU17, HWC+17, ZKS+18, ZKX18, SRR20], distillation [PMW+16, WJC18,
GFFG20], pre-processing or dimensionality-reduction approaches [BCM17, XEQ18, BRRG18,
MST18, PMG+18b, SGHG19, MWYA19, QZZ+20], so-called manifold-based methods [IJA+17,
PS18, JSZ+19, SRBB19, NHL20, DLJ+20, CGDK20] or randomness/stochasticity based schemes
[XWZ+18, GRCvdM18, WWZ+18, PMG+18a, ZKX18, ZL19, QZZ+20, AF21]. However, a
significant portion of these methods have been broken by adaptive attacks [CW16, CW17a,

1See https://robustbench.github.io/ or https://ml.cs.tsinghua.edu.cn/adv-bench/
2See https://github.com/MadryLab/mnist_challenge.

https://robustbench.github.io/
https://ml.cs.tsinghua.edu.cn/adv-bench/
https://github.com/MadryLab/mnist_challenge
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CW17c, LZLY17, EIA18, MAT+18, AC18, Car19, CH20c], i.e., attacks designed to break a
specific defense, stressing the importance of proper robustness evaluation [PDS+21]. Thus,
recent work also considers adaptive defenses that typically involve test-time optimization
[KSDT21, CLZ21, APT+21, SHM21, HLR21, MCW+21, YHL21], also see [CGB+22]. Besides,
there is a significant line of work on certified robustness [YWW+17, GMD+18, MGV18,
SGM+18, ZWC+18, WK18, GDS+18, CRK19, LAJ19, CAH19, CH20b, YDH+20, KLFG20] as
well as verification approaches [Zak01, KBD+17, BTT+18, WRTK19, BLT+20]. Nevertheless,
adversarial training [GSS15, MMS+18] has become the de facto standard to train adversarially
robust models as the obtained (empirical) robustness typically exceeds the (certified) robustness
of such methods. Besides discussing work on adversarial training, we address the accuracy
drop generally observed in conjunction with adversarial training [TSE+19] and the problem of
robust overfitting [RWK20]. Finally, we consider not directly improving adversarial robustness,
but detecting adversarial examples instead.

Adversarial Training: Training against adversarial examples generated on-the-fly was first
proposed in [GSS15]. However, it gained popularity in [MMS+18] when used with a multistep
attack. While [MMS+18] trains only with adversarial examples, mixing clean and adversarial
examples is also possible [GSS15]. In [ZYJ+19], this is combined with a Kullback-Leibler
divergence between clean and adversarial predictions. [HMKS19, KTH20] further boost adver-
sarial with additional self-supervised training, [AUH+19, CRS+19, GRW+21, SMH+22] utilize
additional unlabeled/generated examples during training and [HLM19, JCCW20] employ
pre-training strategies. More recently, [WXW20b] use weight perturbations during training to
avoid robust overfitting. Plenty of additional variants have been proposed, including instance-
aware threat models [BGH19, DSLH20], additional regularizers [ZW19, RHF19b, PYD+20,
SF20, WCY20, BLZ+20, LML+21], curriculum training [CLS18, YLL+19], Bayesian networks
[YZ18, LLWH19], and many more [LVKB19, KW20, WCG+20, CLC+20, ZCS+19, ZXH+20,
JSW20, ZZMJ21, LK21, ZZN+21, RMD21, WW22, PLY+22]. Despite challenges, adversarial
training with universal adversarial examples [SNX+18, PMPP18] is also researched. Unfortu-
nately, computational complexity increases significantly. This is addressed in several works
[SNG+19, WRK20, ZZL+19] by re-using adversarial examples during training or resorting to
adversarial training with single-step attacks [NKM18, SNG+19, SB20, WXW20a, PL21], which
comes with its own problems [LWJC20, AF20, KLL21, KM21]. Recent studies further focus on
tuning hyperparameters [GQU+20, PYD+21], architectures [WCC+21, HWE+21, DMM21], the
role of data augmentation [RGC+21b, RGC+21a], the generative capabilities of adversarially
robust models [ZMS+21] or their loss landscape [YLW+18, XYP19, PYXW19, LSL+20]. Train-
ing schemes similar to adversarial training also play an important role in certified robustness
[WK18, MGV18, WSMK18, GDS+18, SLR+19]. In all of these cases, the obtained robustness
is limited to the type of adversarial examples used during training, e.g., a specific Lp threat
model. Various approaches [TB19, MWK20, MSH21, PTSS21] attempt to address this problem
by training with multiple types of adversarial examples. However, again, robustness generalizes
poorly beyond those adversarial examples.

In Chapter 7, we present confidence-calibrated adversarial training which intends to obtain
generalizable robustness against multiple types of adversarial examples without seeing them
during training. Thereby, it tackles adversarial robustness, out-of-distribution detection and
calibration jointly. This is achieved by enforcing low confidence on adversarial examples during
training and in stark contrast to all the methods outlined above. These usually intend to
classify adversarial examples correctly with high confidence. Since, the idea of integrating
rejection through confidence in adversarial training has been studied in several additional
works [LF19, KCF20, BBSZ20, PZH+21, JPK+21, SLK21, CRC+22].
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Robustness-Accuracy Trade-Off: Adversarial training generally leads to decreased accuracy
on clean examples. This trade-off between robustness and accuracy has explicitly been studied
in several works: [TSE+19, SZC+18] argue that there exists an inherent trade-off between
robustness and generalization. However, the theoretical argument in [TSE+19] is questionable
as adversarial examples are allowed to change their actual, true label and the experimental re-
sults obtained in [SZC+18] stem from comparing different architectures and training strategies.
[SST+18, RXY+19] argue that the trade-off stems from finite data and adversarial robustness has
higher sample complexity, while [CMZK20] argues that more data can actually worsen the trade-
off. In contrast, [RGB16, YRZ+20b] suggest that both accuracy and robustness should be achiev-
able, i.e., the trade-off is not inherent. [JSH20, DHHR20, RXY+20, CHY22] study the trade-off
in simple settings, e.g., linear cases or Gaussian cases and [Nak19] argues that more complex
models are necessary. Beyond adversarial training, this trade-off is also observed for most certi-
fied robustness approaches [ZCX+20, GRF+20, MKW+21] and remains difficult to overcome,
even in recent training methods [BGH19, WCG+20, ZXH+20, ASZ20, RMD21, PLY+22]

Supported by [YRZ+20b, SST+18], our work in Chapter 4 concludes that the trade-off
is not inherent and includes a detailed discussion of the theoretical argument of [TSE+19].
However, we also find adversarial training to have higher sample complexity. Moreover, our
work suggests that adversarial examples leaving the underlying manifold could be the core
reason for this trade-off. Our adversarial training variant in Chapter 7 improves the trade-off
significantly by encouraging low-confidence prediction on adversarial examples.

Robust Overfitting: Adversarial training also suffers from severe robust overfitting [RWK20].
While early stopping was shown to be reasonably effective, this motivated work [WXW20b,
SSJF21, CZL+21] trying to mitigate robust overfitting altogether. While [SSJF21] studies the
use of different activation functions, [WXW20b] proposes adversarial training with adversarial
weight perturbations explicitly aimed at finding flatter minima in order to reduce overfitting.
Instead, [CZL+21] explores self-training and distillation. Robust overfitting is also studied in
relation to memorization in adversarial training [DXY+22], the impact of problematic training
data [DLS21a], and double descent [DLS21b].

In Chapter 5, we empirically link robust overfitting and good robust generalization to the
flatness of the found minima. This connection has been studied extensively in the context
of clean generalization [NBMS17, KMN+17, CCS+17, DPBB17, STIM18, BGSW18, IPG+18,
JNM+20, FKMN21]. Using flatness measures adapted to the robust loss, we show that many
well-performing methods find flat minima.

Detection of Adversarial Examples: Instead of correctly classifying adversarial examples, as
intended in adversarial training, some early works [LL17, BCM17, FCSG17, GWK17, GMP+17,
HG17b, MGFB17] try instead to detect and reject adversarial examples. However, they have
been shown to be ineffective against adaptive attacks [CW17a]. Nevertheless, rejecting ad-
versarial examples by, e.g., confidence or other statistics, is still an active area of research
[ABB+17, ZH18, SG18a, CBC+18, RSJK18, LLD+18, MLW+18, LLLS18b, RKH19, LZZ+19,
AD19a, SWW+20, SKC+20, CSG20, ECW20, TZLD21, LTHL21] despite approaches being bro-
ken continuously [YBTV21, BHP+21]. Thus, in recent benchmarks, most detectors are applied
on top of adversarially trained models [YBTV21]. Some of these approaches are also used to
detect out-of-distribution examples [MLW+18, LLLS18b, LLS18]. We also refer to [AHFD21]
for a recent survey on adversarial example detection.

Our confidence-calibrated adversarial training of Chapter 7 also functions as a detector. How-
ever, it is directly trained in a min-max fashion instead of being applied after adversarial
training. We also use an extensive range of adaptive attacks for evaluation, thereby breaking
several detector baselines [MLW+18, LLLS18b].
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2.4 Robustness for Neural Network Accelerators

Besides robustness w.r.t. input perturbations, many applications require robustness in terms
of the model’s parameters. For example, quantization often expects models to be robust
against quantization errors in their weights [SSH15, MAA+16, MDI19, ABvB+20]. In this
thesis, we consider deploying quantized models on special-purpose hardware for inference,
so-called accelerators. Here, robustness in the weights is relevant independent of the hardware
type: For example, analog hardware inherently induces noise in computations, which can
be modeled using noisy weights, see [SHES17, HGP19, ZKMW20, ICZ+20, FQ21, ICZ+21]
for representative recent work. While analog hardware promises cheap and energy-efficient
accelerators, digital hardware is still dominating in the context of deep learning [HGP19].
However, in digital hardware weight robustness is also very relevant: Besides quantization,
memory arrays commonly exhibit bit errors, especially when optimizing for energy efficiency
[KHM+18a, KOY+19]. Moreover, attacks on the memory are wide-spread and possible using
both hardware- and software-based approaches [KDK+14, MOG+20]. In both cases, robustness
against bit errors in the model’s quantized weights is crucial. We review relevant work
on random and adversarial bit errors in Section 2.4.1 as well as discuss related work on
quantization and weight robustness in general, in Section 2.4.2 and 2.4.3, respectively.

2.4.1 Bit Error Robustness for Accelerators

Random Bit Error Robustness for Energy-Efficiency: The weights of a model are the most
significant part in terms of memory. As a result, data movement during inference plays a
significant role in the energy consumption of an accelerator [SCYE17]. This has been shown for
both accelerators with off-chip [KOY+19] and on-chip [KHM+18a, CSC+19] memory. Besides
optimizing data flow or exploiting access patterns [JHHM21], recent work tries to reduce
the energy needs of memory arrays by lowering voltage. However, [GKKR17, GKB+19]
demonstrate that this leads to an exponentially increasing rate of bit errors which directly
affect the stored weights, leading to severe drops in accuracy [CYG+17, CSC+19, SOY+20]. To
prevent accuracy drops at low voltages, [RWA+16] combines fault detection with logic to set the
result of faulty data reads to zero. [MUDV17, CSC+19, CH21a] uses supply voltage boosting
to ensure error-free, low-voltage operation, while [SWS+16] proposes storing critical bits in
specifically robust memory cells. However, such methods incur power and area overhead. Thus,
[KHM+18a, KHM+18b] and [KOY+19] propose co-design approaches combining training on
profiled bit errors with hardware mitigation strategies and clever weight to memory mapping.
However, these approaches are specific to the profiled chips and do not necessarily generalize
well to different voltage settings. Besides low-voltage operation for energy efficiency, recent
work [TSS17] also demonstrates an attack that maliciously reduces voltage and [HPG+08, HS21]
show that aging also causes voltage shifts. Thus, robustness against the induced bit errors is
also relevant from a security and durability perspective.

In Chapter 6, we present random bit error training with weight clipping to obtain robustness
that generalizes across chips and voltages without expensive profiling or hardware mitigation
strategies. The obtained energy savings from low-voltage operation can directly be combined
with lower precision [PKY18]. We also study low-voltage induced bit errors in the model’s
activations and inputs. Concurrent work [BCC+21] also proposes a max-margin loss for
improving bit error robustness in binary quantization. Similarly, [YBG+21] introduces another
co-design approach to handle the impact of temperature variations on non-volatile memory.
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Adversarial Bit Error Robustness for Security: Works such as [KDK+14, MOG+20] demon-
strate methods to induce few, but targeted bit flips in memory. The impact of such attacks
on the weights has recently been studied in [RHF19a]: The proposed bit flip attack (BFA) is a
search-based strategy to find as few bit errors as possible such that accuracy reduces to chance
level. However, the binarization approach of [HRL+20], improving robustness against untar-
geted BFA, has been shown to be ineffective against a targeted version of BFA [RHL+20, RHF20].
These attacks were also demonstrated on real hardware in [YRF20]. Moreover, the authors of
[HRL+20] conclude that training on adversarial bit errors is not a promising defense. Instead,
[RYL+21] resorts to binary quantization and [LRH+21] employ a checksum-based detector.

In Chapter 6, we first propose a more effective and efficient, gradient-based adversarial bit
error attack, outperforming [RHF19a, RHL+20]. Subsequently, we demonstrate that adversarial
bit error training improves robustness against both untargeted and targeted attacks.

2.4.2 Quantization Robustness

Network quantization [Guo18, GKD+21] is motivated by faster inference through fixed-point
quantization and arithmetic [LTA16, SBS17, LDX+17], energy savings and reduced mem-
ory requirements. To avoid reduced accuracy, quantization is already applied during train-
ing [JKC+18, Kri18] or in a fine-tuning stage [GDAT18, BNS19, nvr, ner]. This generally
enables significantly lower precisions down to binary weights [RORF16, CBD15]. Some
works also consider quantizing activations [RORF16, HCS+17, CWV+18] and/or gradients
[SFD+14, ZNZ+16, AGL+17]. We refer to [Guo18, GKD+21] for recent surveys which also dis-
cuss the importance of quantization in neural network-hardware co-design. As data movement
makes up a significant part of the energy consumption of accelerators [SCYE17, CBM+20],
quantization has direct impact on energy-efficiency.

In Chapter 6, we use a simple but efficient quantization scheme during training as well as
for activations during inference. However, in contrast to, e.g., [ZNZ+16, JKC+18, LWL+19],
we also quantize the batch or group normalization [IS15a, WH18] parameters. While [SSH15,
MAA+16, MDI19, ABvB+20] study the robustness to quantization, the robustness of various
quantization schemes against injected bit errors is not considered. This is surprising as our work
shows that quantization impacts robustness against bit errors significantly. We further combine
this with weight clipping during training. However, in contrast to [SSH15, ZST+18, PKY18],
which clip outliers for quantization, we use weight clipping as regularization during training to
improve robustness.

2.4.3 Weight Robustness and Fault Tolerance

Few works explicitly study the impact of (random or adversarial) weight perturbations:
[WZL+20] considers robustness w.r.t. L∞ weight perturbations, while [CSK17] studies Gaussian
noise on weights. More recently, [TCC+20, THYC21b, THYC21a] started to formalize weight
robustness by providing generalization bounds and some backdooring attacks also manipulate
weights explicitly [JZJ+18, DS20, ZWG+19]. Besides these works, there is a more established
line of work on fault tolerance, i.e., considering structural changes such as removed units.
Early work goes back to [APS94, NSY92, CMMR94]. These approaches obtain fault-tolerant
neural networks using approaches similar to adversarial training [DVK98, LHS14]. We refer
to [TG17] for a comprehensive survey including more recent work. Generally, fault tolerance
addresses a range of different errors, including node faults [LHS14, DVK98], hardware soft



22 chapter 2. related work

errors [AGGC18], timing errors [DFD+15] or transient errors in general [SUC18].

In contrast to our discussion in Chapter 6, however, large rates of non-transient bit errors
provoked through low-voltage operation have not been considered. Nevertheless, some of
these approaches are related to ours in spirit: [DPA+14] consider inexact computation for
energy-efficiency and [CM99, KMS19, HHS20] constrain weights and/or activations to limit
the impact of various errors – similar to our weight clipping. However, in Chapter 6, we do not
consider structural errors.

2.5 Uncertainty Estimation

Obtaining good estimates of a model’s uncertainty plays a key role in almost all applications of
machine learning [Gal16, KSB21, HW21], including robustness. In the following, we focus on
uncertainty estimation techniques for deep neural networks, focusing particularly on directly
training calibrated models. In particular, we consider two directions: First, considering out-
of-distribution detection and, second, regarding conformal prediction [GVV98, VGS05], which
aims to predict efficient (i.e., small) confidence sets with an underlying coverage guarantee
independent of the data distribution and model.

2.5.1 Out-of-Distribution Calibration and Detection

Calibration [GPSW17] generally refers to the predicted confidence being close to the likelihood
of being correct. Even though measuring calibration is understood to be difficult [NDZ+19,
VWA+19, RCSM20, GRA+21, MDR+21], researchers are aware that deep neural networks
produce overconfident predictions [YLD11, NO15, SOF+19, NDZ+19]. This becomes especially
apparent in the context of out-of-distribution examples where confidence should generally
be low in order to reliably detect them [LLS17, HG17a, LLLS18b, LLS18, MLW+18, VJZ+18,
RLF+19, CDD19, ANKT19, CLW+20, SO20]. To address this problem [RLF+19] use likelihood
ratios for detection, [AD19b] proposes a patch Gaussian data augmentation scheme, [HMKS19]
augments training with a self-supervised loss or uses AugMix [HMC+20], [WBR+20] uses
contrastive learning, [TCB+19] trains on interpolated examples, [vASTG20, CMS+22] use radial
basis function (RBF) networks or [JHS19, XYA20] utilize generative models. These approaches
do not explicitly use out-of-distribution examples during training but aim to improve calibration
in general to allow better detection at test time. Instead, [LLLS18a, HMD19] explicitly enforce
a uniform distribution on out-of-distribution examples supplied during training. Similarly,
[HAB19] use out-of-distribution examples during training, but compute them in an adversarial
way starting from random noise. These approaches have been extended in various ways
[GE18, MPYW20, TMJS20, LV20, CLW+21, PRSW21, TTD+21], e.g., using contrastive learning
in [WBR+20] or Bayesian approaches in [KHH20a], and is compared with a standard binary
classifier in [BMAH22]. Similar to adversarial robustness, there is also a line of work on
certifiable out-of-distribution detection [BMH20, MH20, MBH21].

Our confidence-calibrated adversarial training presented in Chapter 7 does not see out-of-
distribution examples during training or calibration. However, biasing the model to yield low
confidence on adversarial examples is similar to [LLLS18a, HMD19, HAB19] and we show that
our approach improves detection of distal adversarial examples as computed in [HAB19].
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2.5.2 Conformal Prediction

Conformal prediction builds on early work in [GVV98, VGS05] allowing the model to predict
confidence intervals for regression [RPC19] or confidence sets for classification [DN10, HPW18,
RSC20, ABJM21, CGD21]. Most of these approaches follow a split conformal prediction
approach [LRW13] where a held-out set of exchangeable calibration examples is used after
training to define these confidence sets. However, earlier variants based on cross-validation
[Vov13] or jackknife (i.e., leave-one-out) [BCRT21] are also available. The assumption of
exchangeability can be relaxed as discussed in [DWR18]. These approaches mostly provide
marginal coverage, i.e., an unconditional guarantee that the true label is included with a
specific probability. [Vov12, BCRT20] suggest that it is generally difficult or impossible to
obtain conditional coverage, e.g., conditioned on the true label. However, [RSC20, FBR21] work
towards empirically better conditional coverage and [SLW19] show that efficient class-conditional
coverage is possible. [ABJM21] extends the work by [RSC20] to obtain smaller confidence sets
at the expense of the obtained empirical conditional coverage and [FSJB22] allows to trade
coverage for improved precision, i.e., less false positives. Conformal prediction has also been
studied in the context of ensembles [YK21], allowing to perform model selection based on
inefficiency while keeping coverage guarantees. The work of [BAL+21] can be seen as an
extension in which a guarantee on an arbitrary, user-specified risk can be obtained. There also
exist conformal methods for weakly-supervised [CGAD22], few-shot [FSJB21] or structured
prediction tasks [ABC+21]. Moreover, [ABZJ21] provide differentiable private confidence sets.
Finally, [Shi00, CMLZ16, TBCR19, PR21, BCL+21] propose conformal predictors for settings
with distribution or label shift. We refer to [SV08, BHV14, ZFV20, AB21] for a comprehensive
introduction to conformal prediction. All of these approaches come into play post-training.

In contrast, Chapter 8 proposes conformal training, a strategy to train deep neural networks
jointly with a conformal predictor. This allows to reduce inefficiency and optimize arbitrary
objectives defined directly on the predicted confidence sets, e.g., to influence their composition,
which is difficult for standard conformal methods. After training, re-calibration with any
arbitrary conformal method preserves the obtained coverage guarantee.





I
D e e p L e a r n i n g f o r 3 D S h a p e

C o m p l e t i o n

In the first part of this thesis, we use deep learning to address a
fundamental problem in 3D computer vision, a field that has received
considerable attention in recent years due to an increased interest in
autonomous vehicles and the availability of low-cost 3D sensors.
Specifically, Chapter 3 considers the task of (single-view) 3D shape
completion from point clouds with weak supervision. Using only 3D
bounding box annotations, we are able to complete 3D shapes such
as cars from very sparse and noisy point clouds. This is achieved
without requiring matching pairs of point clouds and completed
shapes during training. Thereby, we address two limitations of prior
work: the inefficient inference of data-driven approaches that perform
shape alignment at test time and the required supervision of deep
learning based methods.
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In this first chapter, we address a fundamental problem in 3D computer vision: 3D shape
completion from (single-view) sparse and noisy point clouds. Existing approaches are
usually data-driven or learning-based: Data-driven approaches rely on a shape model

whose parameters are optimized to fit the observations. Learning-based approaches, in contrast,
avoid the expensive optimization step by learning to directly predict complete shapes from
incomplete observations in a fully-supervised setting. However, full supervision is often not
available in practice. In this chapter, we propose a weakly-supervised learning-based approach
to 3D shape completion which neither requires slow optimization nor direct supervision. While
we also learn a shape prior on synthetic data, we amortize, i.e., learn, maximum likelihood
fitting using deep neural networks resulting in efficient shape completion without sacrificing
accuracy. On synthetic benchmarks based on ShapeNet [CFG+15] and ModelNet [WSK+15]
as well as on real data from KITTI [GLU12] and Kinect [YRM+19], we demonstrate that the
proposed amortized maximum likelihood approach is able to compete with the fully supervised
baseline of [DQN17] and outperforms the data-driven approach of [ESL16], while requiring
less supervision and being significantly faster.

This chapter is based on [SG20]: As first author, David Stutz conducted all the experiments
and was the main writer. This work also represents a significant extension of previous work
[SG18b] published at CVPR 2018 and based on the master thesis [Stu17] which received the
MINT Award IT 2018. See Section 3.1 for details.

The code for this work can be found on GitHub1

3.1 Introduction

3D shape perception is a long-standing and fundamental problem both in human and computer
vision [Piz07, Piz10, FH13] with many applications to robotics. A large body of work focuses

1https://github.com/davidstutz/ijcv2018-improved-shape-completion
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(a) ShapeNet (Synthetic) (b) KITTI (Real) (c) ModelNet (Synthetic) (d) Kinect (Real)

Figure 3.1: 3D Shape Completion: Results for cars on ShapeNet [CFG+15] and KITTI [GLU12]
and for chairs and tables on ModelNet [WSK+15] and Kinect [YRM+19]. Learning shape
completion on real-world data is challenging due to sparse and noisy observations and missing
ground truth. Occupancy grids (right) or meshes from signed distance functions (SDFs, left) at
various resolutions in beige and point cloud observations in red.

on 3D reconstruction, e.g., reconstructing objects or scenes from one or multiple views, which is
an inherently ill-posed inverse problem where many configurations of shape, color, texture
and lighting may result in the very same image. While the primary goal of human vision is
to understand how the human visual system accomplishes such tasks, research in computer
vision is focused on the task of devising 3D reconstruction systems. Generally, work by [Piz10]
suggests that the constraints and priors used for 3D perception are innate and not learned.
Similarly, in computer vision, cues and priors are commonly built into 3D reconstruction
pipelines through explicit assumptions. Recently, however – leveraging the success of deep
learning – researchers started to learn shape models from large collections of data, as for
example ShapeNet [CFG+15]. These generative models have been used to learn how to generate,
manipulate and reason about 3D shapes [GFRG16, BLRW16, SGF16, WZX+16a, WSK+15].

Here, we focus on the specific problem of inferring and completing 3D shapes based on
sparse and noisy 3D point observations as illustrated in Figure 3.1. This problem occurs when
only a single view of an individual object is provided or large parts of the object are occluded
as common, e.g., in robotic applications. For example, autonomous vehicles are commonly
equipped with LiDAR scanners providing a 360 degree point cloud of the surrounding
environment in real-time. This point cloud is inherently incomplete: back and bottom of objects
are typically occluded and – depending on material properties – the observations are sparse
and noisy, see Figure 3.1 for an illustration. Similarly, indoor robots are generally equipped
with low-cost, real-time RGB-D sensors providing noisy point clouds of the observed scene.
In order to make informed decisions (e.g., for path planning and navigation), it is of utmost
importance to efficiently establish a representation of the environment which is as complete as
possible.

Existing approaches to 3D shape completion can be categorized into data-driven and learning-
based methods. The former usually rely on learned shape priors and formulate shape com-
pletion as an optimization problem over the corresponding (lower-dimensional) latent space
[NXS12, BCLS13, DPRR13, HSP14, LDGN15, RGT+15, ESL16, NHT+16]. These approaches
have demonstrated good performance on real data, e.g., on KITTI [GLU12], but are often slow
in practice.

Learning-based approaches, in contrast, assume a fully supervised setting in order to directly
learn shape completion on synthetic data [SGF16, REM+16, RUBG17, SM17, DQN17, FSG17,
WHY+17, VDR+17, HLH+17, YRM+19]. They offer advantages in terms of efficiency as
prediction can be performed in a single forward pass, however, require full supervision during
training. Unfortunately, even multiple, aggregated observations (e.g., from multiple views) will
not be fully complete due to occlusion, sparse sampling of views and noise.
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(1) Shape Prior (Section 3.2.2)
Synthetic Reference Shapes

Shape y

encoder z decoder

Rec. Shape ỹ
Reconstruction Loss

retain fixed decoder

no correspondence needed

(2) Shape Inference (Section 3.2.2)
Real Observations w/o Targets

Observation x

new
encoder

z fixed
decoder

Prop. Shape ỹ
Maximum Likelihood Loss

Figure 3.2: Amortized Maximum Likelihood (AML) for 3D Shape Completion on KITTI:
(1) We train a denoising variational auto-encoder (DVAE) [KW14a, IAMB17] as shape prior on
ShapeNet using occupancy grids and signed distance functions (SDFs) to represent shapes.
(2) The fixed generative model, i.e., decoder, then allows us to learn shape completion using
an unsupervised maximum likelihood (ML) loss by training a new recognition model, i.e.,
encoder. The retained generative model constraints the space of possible shapes while the ML
loss aligns the predicted shape with the observations.

Contributions: In this chapter, we propose an amortized maximum likelihood approach
for 3D shape completion (c.f. Figure 3.2) avoiding the slow optimization problem of data-
driven approaches and the required supervision of learning-based approaches. Specifically, we
first learn a shape prior on synthetic shapes using a (denoising) variational auto-encoder
[KW14a, IAMB17]. Subsequently, 3D shape completion can be formulated as a maximum
likelihood problem. However, instead of maximizing the likelihood independently for distinct
observations, we follow the idea of amortized inference [GG14] and learn to predict the
maximum likelihood solutions directly. Towards this goal, we train a new encoder which
embeds the observations in the same latent space using an unsupervised maximum likelihood
loss. This allows us to learn 3D shape completion in challenging real-world situations, e.g., on
KITTI, and obtain sub-voxel accurate results using signed distance functions at resolutions up
to 643 voxels. For experimental evaluation, we introduce two novel, synthetic shape completion
benchmarks based on ShapeNet and ModelNet [WSK+15]. We compare our approach to the
data-driven approach of [ESL16], a baseline inspired by [GAGM15] and the fully-supervised
learning-based approach of [DQN17]. We additionally present experiments on real data from
KITTI and Kinect [YRM+19]. Experiments show that our approach outperforms data-driven
techniques and rivals learning-based techniques while significantly reducing inference time
and using only a fraction of supervision.

This work is a significant extension of previous work published at CVPR 2018 [SG18b],
based on the master thesis [Stu17]. Compared to [Stu17, SG18b], we improved the proposed
shape completion method, the constructed datasets and present more extensive experiments.
Specifically, we extended our amortized maximum likelihood approach to enforce more variety
and increase visual quality significantly. On ShapeNet and ModelNet, we use volumetric fusion
to obtain more detailed, watertight meshes and manually selected – per object-category – 220
high-quality models to synthesize challenging observations. We additionally increased the
spatial resolution, consider two additional baselines [GAGM15, DQN17] and present results
on an additional real-world dataset [YRM+19].
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(a) Reference Shapes Y (b) Observation xn (c) GT y∗n

Figure 3.3: Weakly-Supervised Shape Completion: Given reference shapes Y and incomplete
observations X , we want to learn a mapping xn 7→ ỹ(xn) such that ỹ(xn) matches the unknown
ground truth shape y∗n as close as possible. The observations xn are split into free space (i.e.,
xn,i = 0, right) and point observations (i.e., xn,i = 1, left). Shapes are shown in beige and
observations in red.

3.2 3D Shape Completion with Amortized Maximum Likelihood

In the following, we introduce the mathematical formulation of the weakly-supervised 3D shape
completion problem. Subsequently, we briefly discuss denoising variational auto-encoders
(DVAEs) [KW14a, IAMB17] which we use to learn a strong shape prior that embeds a set of
reference shapes in a low-dimensional latent space. Then, we formally derive our proposed
amortized maximum likelihood (AML) approach. Here, we use maximum likelihood to learn
an embedding of the observations within the same latent space – thereby allowing to perform
shape completion. The overall approach is also illustrated in Figure 3.2.

3.2.1 Problem Formulation

In a supervised setting, the task of 3D shape completion can be described as follows: Given a
set of incomplete observations X = {xn}N

n=1 ⊆ RR and corresponding ground truth shapes
Y∗ = {y∗n}N

n=1 ⊆ RR, learn a mapping xn 7→ y∗n that is able to generalize to previously
unseen observations and possibly across object categories. We assume RR to be a suitable
representation of observations and shapes. In practice, we resort to occupancy grids and signed
distance functions (SDFs) defined on regular grids, i.e., xn, y∗n ∈ RH×W×D ≃ RR. Specifically,
occupancy grids indicate occupied space, i.e., voxel y∗n,i = 1 if and only if the voxel lies on or
inside the shape’s surface. To represent shapes with sub-voxel accuracy, SDFs hold the distance
of each voxel’s center to the surface; for voxels inside the shape’s surface, we use negative
sign. Finally, for the (incomplete) observations, we write xn ∈ {0, 1,⊥}R to make missing
information explicit; in particular, xn,i = ⊥ corresponds to unobserved voxels, while xn,i = 1
and xn,i = 0 correspond to occupied and unoccupied voxels, respectively.

On real data, e.g., KITTI [GLU12], supervised learning is often not possible as obtaining
ground truth annotations is labor-intensive [MG15, XKSG16]. Therefore, we target a weakly-
supervised variant of the problem instead: Given observations X and reference shapes Y =
{ym}M

m=1 ⊆ RR both of the same, known object category, learn a mapping xn 7→ ỹ(xn) such that
the predicted shape ỹ(xn) matches the unknown ground truth shape y∗n as close as possible –
or, in practice, the sparse observation xn while being plausible considering the set of reference
shapes, c.f. Figure 3.3. Here, supervision is provided in the form of the known object category.
Alternatively, the reference shapes Y can also include multiple object categories resulting in
an even weaker notion of supervision as the correspondence between observations and object
categories is unknown. Except for the object categories, however, the set of reference shapes
Y , and its size M, is completely independent of the set of observations X , and its size N, as
also highlighted in Figure 3.2. On real data, e.g., KITTI, we additionally assume the object
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locations to be given in the form of 3D bounding boxes in order to extract the corresponding
observations X . In practice, the reference shapes Y are derived from watertight, triangular
meshes, e.g., from ShapeNet [CFG+15] or ModelNet [WSK+15].

3.2.2 Shape Prior

We approach the weakly-supervised shape completion problem by first learning a shape prior
using a denoising variational auto-encoder (DVAE). Later, this prior constrains shape inference
(see Section 3.2.3) to predict reasonable shapes. In the following, we briefly discuss the standard
variational auto-encoder (VAE), as introduced in [KW14a], as well as its denoising extension
described in [IAMB17].

Variational Auto-Encoder (VAE): We propose to use the provided reference shapes Y to learn
a generative model of possible 3D shapes over a low-dimensional latent space Z = RQ, i.e.,
Q ≪ R. In the framework of VAEs, the joint distribution p(y, z) of shapes y and latent codes z
decomposes into p(y|z)p(z) with p(z) being a unit Gaussian N (z; 0, IQ) and IQ ∈ RR×R being
the identity matrix. This decomposition allows sampling z ∼ p(z) and y ∼ p(y|z) to generate
random shapes. For training, however, we additionally need to approximate the posterior
p(z|y). To this end, the so-called recognition model q(z|y) ≈ p(z|y) takes the form

q(z|y) = N (z; µ(y), diag(σ2(y))) (3.1)

where µ(y), σ2(y) ∈ RQ are predicted using the encoder neural network. The generative model
p(y|z) decomposes over voxels yi and the corresponding probabilities p(yi|z) are represented
using Bernoulli distributions for occupancy grids or Gaussian distributions for SDFs:

p(yi|z) = Ber(yi; θi(z)) or p(yi|z) = N (yi; µi(z), σ2). (3.2)

In both cases, the parameters, i.e., θi(z) or µi(z), are predicted using the decoder neural network.
For SDFs, we explicitly set σ2 to be constant (see Section 3.3.3). Then, σ2 merely scales the
corresponding loss, thereby implicitly defining the importance of accurate SDFs relative to
occupancy grids as described below.

In the framework of variational inference, the parameters of the encoder and the decoder
neural networks are found by maximizing the likelihood p(y). In practice, the likelihood is
usually intractable and the evidence lower bound is maximized instead, see [KW14a, BKM16].
This results in the following loss to be minimized:

LVAE(w) = −Eq(z|y)[log p(y|z)] + KL(q(z|y)|p(z)). (3.3)

Here, w are the weights of the encoder and decoder hidden in the recognition model q(z|y)
and the generative model p(y|z), respectively. The Kullback-Leibler divergence KL can be
computed analytically as described in the appendix of [KW14a]. The negative log-likelihood
− log p(y|z) corresponds to a binary cross-entropy error for occupancy grids and a scaled
sum-of-squared error for SDFs. The loss LVAE is minimized using stochastic gradient descent
(SGD) by approximating the expectation using samples:

−Eq(z|y)[log p(y|z)] ≈ −
L

∑
l=1

log p(y|z(l)) (3.4)

The required samples z(l) ∼ q(z|y) are computed using the so-called reparameterization trick,

z(l) = µ(y) + ϵ(l)σ(y) with ϵ(l) ∼ N (ϵ; 0, IQ), (3.5)
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in order to make LVAE, specifically the sampling process, differentiable. In practice, we found
L = 1 samples to be sufficient – which conforms with results by [KW14a]. At test time, the
sampling process z ∼ q(z|y) is replaced by the predicted mean µ(y). Overall, the standard
VAE allows us to embed the reference shapes in a low-dimensional latent space. In practice,
however, the learned prior might still include unreasonable shapes.

Denoising VAE (DVAE): In order to avoid inappropriate shapes to be included in our shape
prior, we consider a denoising variant of the VAE allowing to obtain a tighter bound on the
likelihood p(y). More specifically, a corruption process y′ ∼ p(y′|y) is considered and the
corresponding evidence lower bound results in the following loss:

LDVAE(w) = −Eq(z|y′)[log p(y|z)] + KL(q(z|y′)|p(z)). (3.6)

Note that the reconstruction error − log p(y|z) is still computed with respect to the uncorrupted
shape y while z, in contrast to Equation (3.3), is sampled conditioned on the corrupted shape
y′. In practice, the corruption process p(y′|y) is modeled using Bernoulli noise for occupancy
grids and Gaussian noise for SDFs. In experiments, we found DVAEs to learn more robust
latent spaces – meaning the prior is less likely to contain unreasonable shapes. In the following,
we always use DVAEs as shape priors.

3.2.3 Shape Inference

After learning the shape prior, defining the joint distribution p(y, z) of shapes y and latent codes
z as product of generative model p(y|z) and prior p(z), shape completion can be formulated
as a maximum likelihood (ML) problem for p(y, z) over the lower-dimensional latent space
Z = RQ. The corresponding negative log-likelihood − log p(y, z) to be minimized can be
written as

LML(z) = − ∑
xi ̸=⊥

log p(yi = xi|z)− log p(z). (3.7)

As the prior p(z) is Gaussian, the negative log-probability − log p(z) is proportional to ∥z∥2
2

and constrains the problem to likely, i.e., reasonable, shapes with respect to the shape prior.
As before, the generative model p(y|z) decomposes over voxels. Here, we can only consider
actually observed voxels xi ̸= ⊥. We assume that the learned shape prior can complete the
remaining, unobserved voxels xi = ⊥. Instead of solving Equation (3.7) for each observation
x ∈ X independently, however, we follow the idea of amortized inference [GG14] and train a
new encoder z(x; w) to learn ML. To this end, we keep the generative model p(y|z) fixed and
train only the weights w of the new encoder z(x; w) using the ML objective as loss:

LdAML(w) = − ∑
xi ̸=⊥

log p(yi = xi|z(x; w))− λ log p(z(x; w)). (3.8)

Here, λ controls the importance of the shape prior. The exact form of the probabilities
p(yi = xi|z) depends on the used shape representation. For occupancy grids, this term results
in a cross-entropy error as both the predicted voxels yi and the observations xi are, for xi ̸= ⊥,
binary. For SDFs, however, the term is not well-defined as p(yi|z) is modeled with a continuous
Gaussian distribution, while the observations xi are binary. As solution, we could compute
(signed) distance values along the rays corresponding to observed points (e.g., following
[SKC13]) in order to obtain continuous observations xi ∈ R for xi ̸= ⊥. However, as illustrated
in Figure 3.4, noisy observations cause the distance values along the whole ray to be invalid.
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(b) Bottom: Proposed Gaussian-to-Bernoulli Transformation: For
p(yi) := p(yi|z) = N (yi; µi(z), σ2) (blue), we illustrate the transforma-
tion discussed in Section 3.2.3 allowing to use the binary observations xi
(for xi ̸= ⊥) to supervise the SDF predictions. This is achieved by trans-
forming the predicted Gaussian distribution to a Bernoulli distribution
with occupancy probability θi(µi(z)) = p(yi ≤ 0) (blue area).

Figure 3.4: Handling Noisy Data: Illustration of the problems
with SDF observations and noisy data as obtained on KITTI (a)
as well as our proposed Gaussian-to-Bernoulli transformation
allowing to use binary, i.e., occupancy, observations to supervise
SDF predictions (b).

This can partly be avoided when relying only on occupancy to represent the observations. In
this case, free space (c.f. Figure 3.3) observations are partly correct even though observed points
may lie within the corresponding shapes.

For making SDFs tractable (i.e., to predict sub-voxel accurate, visually smooth and appealing
shapes, see Section 3.3.5) while using binary observations, we propose to define p(yi = xi|z)
through a simple transformation. In particular, as p(yi|z) is modeled using a Gaussian
distribution N (yi; µi(z), σ2) where µi(z) is predicted using the fixed decoder (σ2 is constant),
and xi is binary (for xi ̸= ⊥), we introduce a mapping θi(µi(z)) transforming the predicted
mean SDF value to an occupancy probability θi(µi(z)):

p(yi = xi|z) = Ber(yi = xi; θi(µi(z))) (3.9)

As, by construction (see Section 3.2.1), occupied voxels have negative sign or value zero in the
SDF, we can derive the occupancy probability θi(µi(z)) as the probability of a non-positive
distance:

θi(µi(z)) = N (yi ≤ 0; µi(z), σ2) =
1
2

(
1 + erf

(−µi(z)
σ
√

π

))
. (3.10)

Here, erf is the error function which, in practice, can be approximated following [Abr74]. Equa-
tion (3.10) is illustrated in Figure 3.4 where the occupancy probability θi(µi(z)) is computed as
the area under the Gaussian bell curve for yi ≤ 0. This per-voxel transformation can easily be
implemented as non-linear layer and its derivative w.r.t. µi(z) is, by construction, a Gaussian.
Note that the transformation is correct, not approximate, based on our model assumptions
and the definitions in Section 3.2.1. Overall, this transformation allows us to easily minimize
Equation (3.8) for both occupancy grids and SDFs using binary observations. The obtained
encoder embeds the observations in the latent shape space to perform shape completion.
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3.2.4 Practical Considerations

Encouraging Variety: So far, our AML formulation assumes a deterministic encoder z(x, w)
which predicts, given the observation x, a single code z corresponding to a completed shape.
A closer look at Equation (3.8), however, reveals an unwanted problem: the data term scales
with the number of observations, i.e., |{xi ̸= ⊥}|, while the regularization term stays constant –
with less observations, the regularizer gains in importance leading to limited variety in the
predicted shapes because z(x; w) tends towards zero.

In order to encourage variety, we draw inspiration from the VAE shape prior. Specifically,
we use a probabilistic recognition model

q(z|x) = N (z; µ(x), diag(σ2(x))) (3.11)

(c.f. see Equation (3.1)) and replace the negative log-likelihood − log p(z) with the correspond-
ing Kullback-Leibler divergence KL(q(z|x)|p(z)) with p(z) = N (z; 0, IQ). Intuitively, this
makes sure that the encoder’s predictions “cover” the prior distribution – thereby enforcing
variety. Mathematically, the resulting loss

LAML(w) = −Eq(z|x)

[
∑

xi ̸=⊥
log p(yi = xi|z)

]
+ λKL(q(z|x)p(z)) (3.12)

can be interpreted as the result of maximizing the evidence lower bound of a model with obser-
vation process p(x|y) (analogously to the corruption process p(y′|y) for DVAEs in [IAMB17]
and Section 3.2.2). The expectation is approximated using samples following the reparameteri-
zation trick in Equation (3.5) and, during testing, the sampling process z ∼ q(z|x) is replaced
by the mean prediction µ(x). In practice, we find that Equation (3.12) improves visual quality
of the completed shapes. We compare this AML model to its deterministic variant dAML in
Section 3.3.5.

Handling Noise: Another problem of our AML formulation concerns noise. On KITTI, for
example, specular or transparent surfaces cause invalid observations – laser rays traversing
through these surfaces cause observations to lie within shapes or not get reflected. However,
our AML framework assumes deterministic, i.e., trustworthy, observations – as can be seen
in the reconstruction error in Equation (3.12). Therefore, we introduce per-voxel weights κi
computed using the reference shapes Y = {ym}M

m=1:

κi = 1 −
(

1
M

M

∑
m=1

ym,i

)
∈ [0, 1] (3.13)

where ym,i = 1 if and only if the corresponding voxel is occupied. Applied to observations
xi = 0, these are trusted less if they are unlikely under the shape prior. Note that for point
observations, i.e., xi = 1, this is not necessary as we explicitly consider “filled” shapes (see
Section 3.3.1). This can also be interpreted as imposing an additional mean shape prior on
the predicted shapes with respect to the observed free space. In addition, we use a corruption
process p(x′|x) consisting of Bernoulli and Gaussian noise during training (analogously to the
DVAE shape prior).
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(a) Original (b) TSDF Fusion, 2563 (c) Simplification, 5k Faces

(d) Reconstruction,
24×54×24/323

(e) Observations (f) Voxelization,
24×54×24/323

Figure 3.5: ShapeNet and ModelNet Data Generation Pipeline: On ShapeNet and ModelNet
we illustrate: (a) samples from the original datasets; (b) fused watertight meshes from TSDF
fusion at 2563 voxels resolution using [RUBG17]; (c) simplified meshes (5k faces); (d) marching
cubes [LC87] reconstructions from the SDFs computed from (c) (resolutions 24×54×24 and 323

voxels; note that steps (b) and (c) are necessary to derive exact SDFs); (e) observations obtained
by projection into a single view; and (f) voxelized observations and shapes. Shapes (meshes
and occupancy grids) in beige and observations in red.

3.3 Experiments

We present experiments on multiple synthetic and real datasets, see Section 3.3.1. Before
presenting quantitative and qualitative experimental results in Section 3.3.5, including a
discussion of failure cases and runtime, we also detail used evaluation metrics in Section 3.3.2,
our training procedure and the used architecture in Section 3.3.3 and introduce both data-driven
and learning-based baselines in Section 3.3.4

3.3.1 Data

We briefly introduce our synthetic shape completion benchmarks, derived from ShapeNet
[CFG+15] and ModelNet [WSK+15] (c.f. Figure 3.5), and our data preparation for KITTI
[GLU12] and Kinect [YRM+19] (c.f. Figure 3.6). Table 3.1 summarizes key statistics of these
benchmarks including the level of supervision computed as the fraction of observed voxels, i.e.
|{xn,i ̸=⊥}|/HWD, averaged over observations xn.

ShapeNet: We utilize the truncated SDF (TSDF) fusion approach of [RUBG17] to obtain
watertight versions of the provided car shapes allowing to reliably and efficiently compute
occupancy grids and SDFs. Specifically, we use 100 depth maps of 640×640 pixels resolution,
distributed uniformly on the sphere around the shape, and perform TSDF fusion at a resolution
of 2563 voxels. Detailed watertight meshes, without inner structures, can then be extracted using
marching cubes [LC87] and simplified to 5k faces using MeshLab’s quadratic simplification
algorithm [CCC+08], see Figure 3.5a to c. Finally, we manually selected 220 shapes from this
collection, removing exotic cars, unwanted configurations, or shapes with large holes (e.g.,
missing floors or open windows).

The shapes are split into |Y| = 100 reference shapes, |Y∗| = 100 shapes for training the
inference model, and 20 test shapes. We randomly perturb rotation and scaling to obtain 5
variants of each shape, voxelize them using triangle-voxel intersections and subsequently “fill”
the obtained volumes using a connected components algorithm [JOP+01]. For computing SDFs
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(a) KITTI, Point Clouds (b) Kinect, Occupancy Grids

Figure 3.6: Extracted KITTI and Kinect Data: For KITTI, we show observed points in red and
the accumulated, partial ground truth in green. Note that for the first example ground truth is
not available due to missing past/future observations. For Kinect, we show observations in red
and ElasticFusion [WLS+15] ground truth in beige. Note that the objects are rotated and not
aligned as in ModelNet (c.f. Figure 3.5).

we use SDFGen2. We use three different resolutions: H×W×D = 24×54×24, 32×72×32 and
48×108×48 voxels. Examples are shown in Figure 3.5d to f.

Finally, we use the OpenGL renderer of [GG15] to obtain 10 depth maps per shape. The
incomplete observations X are obtained by re-projecting them into 3D and marking voxels
with at least one point as occupied and voxels between occupied voxels and the camera center
as free space. We obtain more dense point clouds at 48×64 pixels resolution and sparser point
clouds using depth maps of 24×32 pixels resolution. For the latter, more challenging case
we also add exponentially distributed noise (with rate parameter 70) to the depth values, or
randomly (with probability 0.075) set them to the maximum depth to simulate the deficiencies
of point clouds captured with real sensors, e.g., on KITTI. These two variants are denoted
SN-clean and SN-noisy. The obtained observations are illustrated in Figure 3.5e.

KITTI: We extract observations from KITTI’s Velodyne point clouds using the provided
ground truth 3D bounding boxes to avoid the inaccuracies of 3D object detectors (train/test
split by [CKZ+18]). As the 3D bounding boxes in KITTI fit very tightly, we first padded them
by factor 0.25 on all sides. Afterwards, the observed points are voxelized into voxel grids of
size H×W×D = 24×54×24, 32×72×32 and 48×108×48 voxels. To avoid taking points from
the street, nearby walls, vegetation or other objects into account, we only consider those points
lying within the original (i.e., not padded) bounding box. Finally, free space is computed
using ray tracing as described above. We filter all observations to ensure that each observation
contains a minimum of 50 observations. For the bounding boxes in the test set, we additionally
generated partial ground truth by accumulating the 3D point clouds of 10 future and 10 past
frames around each observation. Examples are shown in Figure 3.6.

ModelNet: We use ModelNet10, comprising 10 popular object categories (bathtub, bed, chair,
desk, dresser, monitor, night stand, table, toilet) and select, for each category, the first 200 and
20 shapes from the provided training and test sets. Then, we follow the pipeline outlined
in Figure 3.5, as on ShapeNet, using 10 random variants per shape. Due to thin structures,
however, SDF computation does not work well (especially for low resolution, e.g., 323 voxels).
Therefore, we approximate the SDFs using a 3D distance transform on the occupancy grids.
Our experiments are conducted at a resolution of H×W×D = 323, 483 and 643 voxels. Given
the increased difficulty, we use a resolution of 642, 962 and 1282 pixels for the observation
generating depth maps. In our experiments, we consider bathtubs, chairs, desks and tables
individually, as well as all 10 categories together (resulting in 100k views overall). For Kinect,
we additionally used a dataset of rotated chairs and tables aligned with Kinect’s ground plane.

Kinect: Yang et al. [YRM+19] provide Kinect scans of various chairs and tables. They provide
both single-view observations and ground truth from ElasticFusion [WLS+15] as occupancy

2https://github.com/christopherbatty/SDFGen.

https://github.com/christopherbatty/SDFGen
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Synthetic Real
SN-clean/

-noisy
ModelNet KITTI Kinect

Training/Test Sets
#Shapes for Shape Prior, #Views for Shape Inference

#Shapes 500/100 1000/200 – –
#Views 5000/1000 10000/2000 8442/9194 30/10

Observed Voxels in % (< 5%) & Resolutions
Low = 24×54×24/323 ; Medium = 32×72×32/483 ; High = 48×108×48/643

Low 7.66/3.86 9.71 6.79 0.87
Medium 6.1/2.13 8.74 5.24 –
High 2.78/0.93 8.28 3.44 –

Table 3.1: Dataset Statistics: We re-
port the number of (rotated and scaled)
meshes, used as reference shapes, and
the resulting number of observations
(i.e., views, 10 per shape). We also report
the average fraction of observed voxels,
i.e., |{xi ̸=⊥}|/HWD. For ModelNet, we ex-
emplarily report statistics for chairs, and
for Kinect, we report statistics for tables.

grids. However, the ground truth is not fully accurate, and only 40 views are provided per
object category. Still, the objects have been segmented to remove clutter and are appropriate for
experiments in conjunction with ModelNet10. Unfortunately, Yang et al. do not provide SDFs;
again, we use 3D distance transforms as approximation. Additionally, the observations do
not indicate free space, and we were required to guess an appropriate ground plane. For our
experiments, we use 30 views for training and 10 views for testing, see Figure 3.6 for examples.

3.3.2 Evaluation

For occupancy grids, we use Hamming distance (Ham) and intersection-over-union (IoU)
between the (thresholded) predictions and the ground truth. Note that lower Ham is better,
while lower IoU is worse. For SDFs, we consider a mesh-to-mesh distance on ShapeNet and
a mesh-to-point distance on KITTI. We follow [JDV+14] and consider accuracy (Acc) and
completeness (Comp). To measure Acc, we uniformly sample roughly 10k points on the
reconstructed mesh and average their distance to the target mesh. Analogously, Comp is the
distance from the target mesh (or the ground truth points on KITTI) to the reconstructed mesh.
Note that for both Acc and Comp, lower is better. On ShapeNet and ModelNet, we report both
Acc and Comp in voxels, i.e., in multiples of the voxel edge length (i.e., in [vx], as we do not
know the absolute scale of the models); on KITTI, we report Comp in meters (i.e., in [m]).

3.3.3 Architectures and Training

As depicted in Figure 3.7, our network architectures are kept simple and shallow. Considering
a resolution of 24×54×24 voxels on ShapeNet and KITTI, the encoder comprises three stages,
each consisting of two convolutional layers (followed by ReLU activations and batch normal-
ization [IS15a]) and max pooling. The decoder mirrors the encoder, replacing max pooling by
nearest neighbor upsampling. We consistently use 33 convolutional kernels. We use a latent
space of size Q = 10 and predict occupancy using Sigmoid activations.

We found that the shape representation has a significant impact on training. Specifically,
learning both occupancy grids and SDFs works better compared to training on SDFs only.
Additionally, following prior art in single image depth prediction [EPF14, EF15, LRB+16], we
consider log-transformed, truncated SDFs (logTSDFs) for training: given a signed distance
yi, we compute sign(yi) log(1 + min(5, |yi|)) as the corresponding log-transformed, truncated
signed distance. TSDFs are commonly used in the literature [CL96, NIH+11, ESL16, RUBG17,
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ShapeNet, KITTI
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Figure 3.7: Network Architectures: We use different resolutions for ShapeNet and KITTI
as well as ModelNet and Kinect (bottom and top, respectively). In both cases, architectures
for higher resolutions employ one additional stage in the en- and decoder (in gray). Each
convolutional layer is followed by ReLU activations and batch normalization [IS15a]. The
window sizes for max pooling and nearest-neighbor upsampling can be derived from the
context and the number of channels are given in parentheses.

DQN17] and the logarithmic transformation additionally increases the relative importance of
values around the surfaces (i.e., around the zero crossing).

For training, we combine occupancy grids and logTSDFs in separate feature channels and
randomly translate both by up to 3 voxels per axis. Additionally, we use Bernoulli noise
(probability 0.1) and Gaussian noise (variance 0.05). We use Adam [KB15a], a batch size of 16
and the initialization scheme of [GB10a]. The shape prior is trained for 3000 to 4000 epochs
with an initial learning rate of 10−4 which is decayed by 0.925 every 215 iterations until a
minimum of 10−16 has been reached. In addition, weight decay (10−4) is applied. For shape
inference, training takes 30 to 50 epochs, and an initial learning rate of 10−4 is decayed by 0.9
every 215 iterations. For our learning-based baselines (see Section 3.3.4) we require between 300
and 400 epochs using the same training procedure as for the shape prior. On the Kinect dataset,
where only 30 training examples are available, we used 5000 epochs. We use log σ2 = −2 as an
empirically found trade-off between accuracy of the reconstructed SDFs and ease of training –
significantly lower log σ2 may lead to difficulties during training, including divergence. On
ShapeNet, ModelNet and Kinect, the weight λ of the Kullback-Leibler divergence KL (for both
DVAE and (d)AML) was empirically determined to be λ = 2, 2.5, 3 for low, medium and high
resolution, respectively. On KITTI, we use λ = 1 for all resolutions. In practice, λ controls the
trade-off between diversity (low λ) and quality (high λ) of the completed shapes. In addition,
we reduce the weight in free space areas to one fourth on SN-noisy and KITTI to balance
between occupied and free space. We implemented our networks in Torch [CKF11].
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GT,
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GT DVAE,
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DVAE,
High

DVAE,
Low

DVAE,
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(a) Reconstructions

Low Low Low High High High

(b) Random Samples

Figure 3.8: DVAE Shape Prior: Reconstructions and random samples on ShapeNet and
ModelNet at multiple resolutions (c.f. Table 3.1). False negative and false positive voxels are
shown in green and red. Our DVAE shape prior provides high-quality reconstructions and
meaningful random samples across resolutions.

3.3.4 Baselines

Data-Driven Approaches: We consider [ESL16] and [GAGM15] as data-driven baselines.
Additionally, we consider regular maximum likelihood (ML). [ESL16] – referred to as Eng16
– use a principal component analysis shape prior trained on a manually selected set of car
models3. Shape completion is posed as optimization problem considering both shape and pose.
The pre-trained shape prior provided by [ESL16] assumes a ground plane which is, according
to KITTI’s LiDAR data, fixed at 1m height. Thus, we don’t need to optimize pose on KITTI as
we use the ground truth bounding boxes. On ShapeNet, in contrast, we need to optimize both
pose and shape to deal with the random rotations in SN-clean and SN-noisy.

Inspired by [GAGM15], we also consider a shape retrieval and fitting baseline. Specifically,
we perform iterative closest point (ICP) [BM92] fitting on all training shapes and subsequently
select the best-fitting one. To this end, we uniformly sample 1Mio points on the training shapes,
and perform point-to-point ICP4 for 100 iterations using

[
R t

]
=
[
I3 0

]
as initialization. On

the training set, we verified that this approach is always able to retrieve the perfect shape.
Finally, we consider a simple ML baseline iteratively minimizing Equation (3.7) using

stochastic gradient descent (SGD). This baseline is similar to Eng16, however, like ours it is
bound to the voxel grid. Per example, we allow a maximum of 5000 iterations, starting with
latent code z = 0, learning rate 0.05 and momentum 0.5 (decayed every 50 iterations at rate
0.85 and 1.0 until 10−5 and 0.9 have been reached).

Learning-Based Approaches: Learning-based approaches usually employ an encoder-decoder
architecture to directly learn a mapping from observations xn to ground truth shapes y∗n in
a fully supervised setting [WHY+17, VDR+17, YWW+17, DQN17, YRM+19]. While existing
architectures differ slightly, they usually rely on a U-net architecture [RFB15, ÇAL+16]. Here,
we use the approach of [DQN17]5 – referred to as Dai17 – as a representative baseline for
this class of approaches. To run Dai17 on ModelNet, we added one convolutional stage in
the en- and decoder for larger resolutions. On ShapeNet and KITTI, we needed to adapt the
convolutional strides to fit the corresponding resolutions. In addition, we consider a custom
learning-based baseline which uses the architecture of our DVAE shape prior, c.f. Figure 3.7. In
contrast to [DQN17], this baseline is also limited by the low-dimensional (Q = 10) bottleneck
as it does not use skip connections.

3https://github.com/VisualComputingInstitute/ShapePriors_GCPR16
4http://www.cvlibs.net/software/libicp/.
5https://github.com/angeladai/cnncomplete

https://github.com/VisualComputingInstitute/ShapePriors_GCPR16
http://www.cvlibs.net/software/libicp/
https://github.com/angeladai/cnncomplete
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(a) DVAE t-SNE (b) DVAE Projection (c) AML t-SNE (d) AML Projection

Figure 3.9: Learned Latent Spaces: In (a) and (b), we show a t-SNE [vdMH08] visualization
and a two-dimensional projection of the DVAE latent space on ModelNet10. The DVAE is
able to separate the ten object categories. In (c) and (d), we show a t-SNE visualization and
a projection of the latent space corresponding to our learned AML model on SN-clean. We
randomly picked 10 ground truth shapes, “x”, and the corresponding observations (10 per
shape), points (gray pixels indicate remaining shapes/observations). AML is able to associate
observations with the corresponding ground truth shapes under weak supervision.

3.3.5 Experimental Evaluation

Quantitative results are summarized in Table 3.2 (ShapeNet and KITTI) and 3.3 (ModelNet).
Qualitative results for the shape prior are shown in Figure 3.8 and 3.9, while shape completion
results are shown in Figure 3.11 for ShapeNet and ModelNet and 3.14 for KITTI and Kinect.

Latent Space Dimensionality: Regarding our DVAE shape prior, we found the dimensionality
Q to be of crucial importance as it defines the trade-off between reconstruction accuracy and
random sample quality (i.e., the quality of the generative model). A higher-dimensional
latent space usually results in higher-quality reconstructions but also imposes the difficulty of
randomly generating meaningful shapes. Across all datasets, we found Q = 10 to be suitable –
which is significantly smaller compared to related work: 35 in [LYF17], 6912 in [SGF16], 200
for [WZX+16a, SM17] or 64 in [GFRG16]. Still, we are able to obtain visually appealing results.
Finally, in Figure 3.8 we show qualitative results, illustrating good reconstruction performance
and reasonable random samples across resolutions.

Figure 3.9 shows a t-SNE [vdMH08] visualization as well as a projection of the Q = 10
dimensional latent space, color coding the 10 object categories of ModelNet10. The DVAE
clusters the object categories within the support region of the unit Gaussian. In the t-SNE
visualization, we additionally see ambiguities arising in ModelNet10, e.g., night stands and
dressers often look indistinguishable while monitors are very dissimilar to all other categories.
Overall, these findings support our decision to use a DVAE with Q = 10 as shape prior.

dA
M

L
A

M
L

Figure 3.10: Comparison of AML and dAML: Our deterministic variant, dAML, suffers from
inferior results, including artifacts and less details. Predicted shapes in beige and observations
in red at low resolution (24×54×24 voxels).
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Supervision Method SN-clean SN-noisy KITTI
in % Ham↓ IoU↑ Acc [vx] ↓ Comp [vx] ↓ Ham↓ IoU↑ Acc [vx] ↓ Comp [vx] ↓ Comp [m] ↓

Low Resolution: 24 × 54 × 24 voxels; * independent of resolution

(shape prior) DVAE 0.019 0.885 0.283 0.527 (same shape prior as on SN-clean)

100 [DQN17] (Dai17) 0.021 0.872 0.321 0.564 0.027 0.836 0.391 0.633 0.128
Sup 0.026 0.841 0.409 0.607 0.028 0.833 0.407 0.637 0.091

< 7.7

Naïve 0.067 0.596 0.999 1.335 0.064 0.609 0.941 1.29 –
Mean 0.052 0.697 0.79 0.938 0.052 0.696 0.79 0.938 –
ML 0.04 0.756 0.637 0.8 0.041 0.755 0.625 0.829 (too slow)
*[GAGM15] (ICP) (mesh only) 0.534 0.503 (mesh only) 7.551 6.372 (too slow)
*[ESL16] (Eng16) (mesh only) 1.235 1.237 (mesh only) 1.974 1.312 0.13
dAML 0.034 0.784 0.532 0.741 0.036 0.772 0.557 0.76 (see AML)
AML 0.034 0.779 0.549 0.753 0.036 0.771 0.57 0.761 0.12

Low Resolution: 24 × 54 × 24 voxels; Multiple, k > 1 Fused Views

100 [DQN17] (Dai17), k = 5 0.012 0.924 0.214 0.436 0.018 0.887 0.278 0.491 n/a
Sup, k = 5 0.022 0.866 0.336 0.566 0.024 0.86 0.331 0.573

< 16 AML, k = 2 0.032 0.794 0.489 0.695 0.034 0.79 0.52 0.725
n/a< 24 AML, k = 3 0.031 0.809 0.471 0.667 0.031 0.81 0.493 0.67

< 40 AML, k = 5 0.031 0.804 0.502 0.686 0.035 0.799 0.523 0.7

Medium Resolution: 32 × 72 × 32 voxels

(shape prior) DVAE 0.019 0.877 0.24 0.47 (same shape prior as on SN-clean)

100 [DQN17] (Dai17) 0.02 0.869 0.399 0.674 0.026 0.83 0.51 0.767 0.074
Sup 0.027 0.834 0.498 0.789 0.029 0.815 0.571 0.843 0.09

≤ 6.1 AML 0.031 0.788 0.415 0.584 0.036 0.766 0.721 0.953 0.083

High Resolution: 48 × 108 × 48 voxels

(shape prior) DVAE 0.018 0.87 0.272 0.434 (same shape prior as on SN-clean)

100 Dai17 0.017 0.88 0.517 0.827 0.054 0.664 1.559 2.067 0.066
Sup 0.023 0.843 0.677 1.032 0.052 0.674 1.52 1.981 0.091

< 3.5 AML 0.028 0.796 0.433 0.579 0.045 0.659 1.4 1.957 0.078

Table 3.2: Quantitative Results on ShapeNet and KITTI: We consider Hamming distance
(Ham) and intersection over union (IoU) for occupancy grids as well as accuracy (Acc) and
completeness (Comp) for meshes on SN-clean, SN-noisy and KITTI. For Ham, Acc and Comp,
lower is better; for IoU, higher is better. The unit of Acc and Comp is voxels (voxel length at
24×54×48 voxels) or meters. Note that the DVAE shape prior (in gray) is only reported as
reference (i.e., bound on (d)AML). We indicate the level of supervision in percentage, relative
to the corresponding resolution (see Table 3.1) and mark the best results under full supervision
in red and under weak supervision in green. See text for discussion.

Ablation Study: In Table 3.2, we show quantitative results of our model on SN-clean and
SN-noisy. First, we report the reconstruction quality of the DVAE shape prior as reference.
Then, we consider the DVAE shape prior (Naïve), and its mean prediction (Mean) as simple
baselines. The poor performance of both illustrates the difficulty of the benchmark. For AML,
we also consider its deterministic variant, dAML (see Section 3.2). Quantitatively, there is
essentially no difference; however, Figure 3.10 demonstrates that AML is able to predict more
detailed shapes. We also found that using both occupancy and SDFs is necessary to obtain
good performance – as is using both point observations and free space.

Considering Figure 3.9, we additionally demonstrate that the embedding learned by AML,
i.e., the embedding of incomplete observations within the latent shape space, is able to associate
observations with corresponding shapes even under weak supervision. In particular, we show
a t-SNE visualization and a projection of the latent space for AML trained on SN-clean. We
color-code 10 randomly chosen ground truth shapes, resulting in 100 observations (10 views
per shape). AML is usually able to embed observations near the corresponding ground truth
shapes, without explicit supervision (e.g., for violet, pink, blue or teal, the observations – points
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Obs Dai17 Dai17 Eng16 ML ML AML AML GT GT

(a) SN-clean (Top) and SN-noisy (Bottom), Low Resolution (24×54×24)
Obs Dai17 Dai17 ICP ML ML AML AML GT GT

(b) ModelNet Bathtubs, Chairs, Desks and Tables, Low Resolution (323)

Figure 3.11: Qualitative Results on ShapeNet and ModelNet: Results for AML, Dai17,
Eng16, ICP and ML on SN-clean, SN-noisy and ModelNet’s bathtubs, chairs, desks and tables.
AML outperforms data-driven approaches (ML, Eng16, ICP) and rivals Dai17 while requiring
significantly less supervision. Occupancy grids and meshes in beige, observations in red.

– are close to the corresponding ground truth shapes – “x”). Additionally, AML also matches
the unit Gaussian prior distribution reasonably well.

Comparison to Baselines on Synthetic Data: For ShapeNet, Table 3.2 demonstrates that
AML outperforms data-driven approaches such as Eng16, ICP and ML and is able to compete
with fully-supervised approaches, Dai17 and Sup, while using only 8% or less supervision.
We also note that AML outperforms ML, illustrating that amortized inference is beneficial.
Furthermore, Dai17 outperforms Sup, illustrating the advantage of propagating low-level
information (through skip connections) without bottleneck. Most importantly, the performance
gap between AML and Dai17 is rather small considering the difference in supervision (more
than 92%) and on SN-noisy, the drop in performance for Dai17 and Sup is larger than for AML
suggesting that AML handles noise and sparsity more robustly. Figure 3.11 shows that these
conclusions also apply visually where AML performs en par with Dai17.
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Supervision Method bathtub chair desk table ModelNet10
in % Ham↓ IoU↑ Ham↓ IoU↑ Acc [vx]↓ Comp [vx]↓ Ham↓ IoU↑ Ham↓ IoU↑ Ham↓ IoU↑

Low Resolution: 323 voxels; * independent of resolution

(shape prior) DVAE 0.015 0.699 0.025 0.517 0.884 0.72 0.028 0.555 011 0.608 0.023 0.714

100 [DQN17] (Dai17) 0.022 0.59 0.019 0.61 0.663 0.671 0.027 0.568 0.011 0.648 0.03 0.646
Sup 0.023 0.618 0.03 0.478 0.873 0.813 0.036 0.458 0.017 0.497 0.038 0.589

< 10
* [GAGM15] (ICP) (mesh only) (mesh only) 1.483 0.89 (mesh only) (mesh only) (mesh only)
ML 0.028 0.503 0.033 0.414 1.489 1.065 0.048 0.323 0.029 0.318 (too slow)
AML 0.026 0.503 0.033 0.373 1.088 0.785 0.041 0.389 0.018 0.423 0.04 0.509

Medium Resolution: 483 voxels

(shape prior) DVAE 0.014 0.671 0.021 0.491 0.748 0.697 0.025 0.525 0.01 0.548

100 [DQN17] (Dai17) 0.018 0.609 0.016 0.576 0.513 0.508 0.023 0.532 0.008 0.65
< 9 AML 0.024 0.459 0.029 0.347 1.025 0.805 0.034 0.361 0.015 0.384

High Resolution: 643 voxels

(shape prior) DVAE 0.014 0.644 0.02 0.474 0.702 0.705 0.024 0.506 0.009 0.548
100 [DQN17] (Dai17) 0.018 0.54 0.016 0.548 0.47 0.53 0.021 0.525 0.007 0.673

< 9 AML 0.023 0.46 0.026 0.333 0.893 0.852 0.042 0.31 0.012 0.407

Table 3.3: Quantitative Results on ModelNet: Results for bathtubs, chairs, desks, tables and all
ten categories combined (ModelNet10). As the ground truth SDFs are merely approximations
(c.f. Section 3.3.1), we concentrate on Hamming distance (Ham; lower is better) and intersection-
over-union (IoU; higher is better). Only for chairs, we report accuracy Acc and completeness
Comp in voxels (voxel length at 323 voxels). We also indicate the level of supervision (see
Table 3.1). Again, we report the DVAE shape prior as reference and color the best weakly-
supervised approach using green and the best fully-supervised approach in red.

For ModelNet, in Table 3.3, we mostly focus on occupancy grids (as the derived SDFs are
approximate, c.f. Section 3.3.1) and show that chairs, desks or tables are more difficult. How-
ever, AML is still able to predict high-quality shapes, outperforming data-driven approaches.
Additionally, in comparison to ShapeNet, the gap between AML and fully-supervised ap-
proaches (Dai17 and Sup) is surprisingly small – not reflecting the difference in supervision.
This means that even under full supervision, these object categories are difficult to complete.
In terms of accuracy (Acc) and completeness (Comp), e.g., for chairs, AML outperforms ICP
and ML. Dai17 and Sup, on the other hand, outperform AML. Still, considering Figure 3.11,
AML predicts visually appealing meshes although the reference shape SDFs on ModelNet are
merely approximate. Qualitatively, AML also outperforms its data-driven rivals and only Dai17
predicts shapes slightly closer to the ground truth.

Multiple Views and Higher Resolutions: In Table 3.2, we consider multiple, k ∈ {2, 3, 5},
randomly fused observations (from the 10 views per shape). Generally, additional observations
are beneficial (also c.f. Figure 3.12). However, fully-supervised approaches such as Dai17
benefit more significantly from more views than AML. Intuitively, especially on SN-noisy,
k = 5 noisy observations seem to impose contradictory constraints that cannot be resolved
under weak supervision. We also show that higher resolution allows both AML and Dai17 to
predict more detailed shapes, see Figure 3.12. For AML this is significant as, e.g., on SN-noisy,
the level of supervision reduces to less than 1%. Also note that AML is able to handle the
slightly asymmetric desks in Figure 3.12 due to the strong shape prior which itself includes
symmetric and less symmetric shapes.

Multiple Object Categories: We also investigate the category-agnostic case, considering all
ten ModelNet10 object categories. Here, we train a single DVAE shape prior (and a single model
for Dai17 and Sup) across all ten object categories. In Table 3.3, the gap between AML and
fully-supervised approaches further shrinks. This means that even fully-supervised methods
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k = 3 AML GT k = 5 AML GT k = 3 AML GT k = 5 AML GT

(a) SN-clean and -noisy, k Views, Low Resolution (24×54×24)
Dai17 AML GT Dai17 AML GT Dai17 AML GT Dai17 AML GT

(b) SN-clean and -noisy, Medium (32×72×32) and High (48×108×48) Resolution
Dai17 AML GT Dai17 AML GT Dai17 AML GT Dai17 AML GT

(c) ModelNet desks and chairs, Medium (483) and High (643) Resolution

Figure 3.12: Multi-View and Higher-Resolution Results on ShapeNet and ModelNet: While
AML is designed for especially sparse observations, it also performs well in a multi-view setting.
Additionally, higher resolutions allow predicting more detailed shapes. Shapes, occupancy
grids or meshes, in beige and observations in red.

have difficulties distinguishing object categories based on sparse observations. Figure 3.13
shows that AML is able to not only predict reasonable shapes, but also identify the correct
object category. In contrast to Dai17, which predicts slightly more detailed shapes, this is
significant as AML does not have access to the object category during training.

Comparison on Real Data: On KITTI, considering Figure 3.14, we illustrate that AML
consistently predicts detailed shapes regardless of the noise and sparsity in the inputs. Our
qualitative results suggest that AML is able to predict more detailed shapes compared to Dai17
and Eng16. Additionally, Eng16 is distracted by sparse and noisy observations. Quantitatively,
instead, Dai17 and Sup outperform AML. However, this is mainly due to two factors: first, the
ground truth collected on KITTI does rarely cover the full car, and second, we put significant
effort into faithfully modeling KITTI’s noise statistics in SN-noisy, allowing Dai17 and Sup
to generalize very well. The latter effort, especially, can be avoided by using our weakly-
supervised approach.

On Kinect, also considering Figure 3.14, only 30 observations are available for training. It
can be seen that AML predicts reasonable shapes for tables. We find it interesting that AML
is able to generalize from only 30 training examples. In this sense, AML functions similar to
ML, in that the objective is trained to overfit to few samples. This, however, cannot work in

Dai17 AML GT Dai17 AML GT Dai17 AML GT Dai17 AML GT

Figure 3.13: Category-Agnostic Results on ModelNet10: AML recovers detailed shapes of
the correct object category even without category supervision (as provided to Dai17). Shapes
(occupancy grids and meshes) in beige and observations in red at low resolution (323 voxels).
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Figure 3.14: Qualitative Results on KITTI
and Kinect: On KITTI, AML visually outper-
forms both Dai17 and Eng16 while being faster
and requiring less supervision. On Kinect,
AML demonstrates that it is able to generalize
from as few as 30 training samples. Predicted
shapes (occupancy grids or meshes) in beige
and observations in red; additionally, partial
ground truth in green.

all cases, as demonstrated by the chairs where AML tries to predict a suitable chair, but does
not fit the observations as well. Another problem witnessed on Kinect, is that the shape prior
training samples need to be aligned to the observations (with respect to the viewing angles).
For the chairs, we were not able to guess the viewing trajectory correctly (c.f. [YRM+19]).

Failure Cases: AML and Dai17 often face similar problems, as illustrated in Figure 3.15,
suggesting that these problems are inherent to the used shape representations or the learning
approach independent of the level of supervision. For example, both AML and Dai17 have
problems with fine, thin structures that are hard to reconstruct properly at any resolution.
Furthermore, identifying the correct object category on ModelNet10 from sparse observations
is difficult for both AML and Sup. Finally, AML additionally has difficulties with exotic objects
that are not well represented in the latent shape space as, e.g., designed chairs.

Runtime: At low resolution, AML as well as the fully-supervised approaches Dai17 and
Sup, are particular fast, requiring up to 2ms on a NVIDIA™ GeForce® GTX TITAN using
Torch [CKF11]. Data-driven approaches (e.g., Eng16, ICP and ML), on the other hand, take
considerably longer. Eng16, for instance requires 168ms on average for completing the shape
of a sparse LIDAR observation from KITTI using an Intel® Xeon® E5-2690 @2.6Ghz and the
multithreaded Ceres solver [AMO12]. ICP and ML take longest, requiring up to 38s and 75s
(not taking into account the point sampling process for the shapes), respectively. Except for
Eng16 and ICP, all approaches scale with the used resolution and the employed architecture.

AML GT AML GT AML Dai17 Dai17

(a) Exotic Shapes and Fine Structures

Dai17 AML GT Dai17 AML GT

(b) Difficulties with Multiple Categories

Figure 3.15: Failures Cases: Left: We show that AML has difficulties with exotic shapes, not
represented in the latent space; and both AML and Dai17 have difficulties with fine details.
Right: Results demonstrating that it is difficult to infer the correct object category from sparse
observations, even under full supervision as required by Dai17. Shapes (occupancy grids and
meshes) in beige and observations in red from various resolutions.
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3.4 Conclusion

In this chapter, we presented a novel, weakly-supervised learning-based approach to 3D shape
completion from sparse and noisy point cloud observations. We used a (denoising) variational
auto-encoder [KW14a, IAMB17] to learn a latent space of shapes for one or multiple object
categories using synthetic data from ShapeNet [CFG+15] or ModelNet [WSK+15]. Based on
the learned generative model, i.e., decoder, we formulated 3D shape completion as a maximum
likelihood problem. In a second step, we then fixed the learned generative model and trained a
new recognition model, i.e. encoder, to amortize, i.e. learn, the maximum likelihood problem.
Thus, our Amortized Maximum Likelihood (AML) approach to 3D shape completion can be
trained in a weakly-supervised fashion. Compared to related data-driven approaches, e.g.,
[NXS12, BCLS13, DPRR13, HSP14, RGT+15, LDGN15, NHT+16, ESL16, ESL17], our approach
offers fast inference at test time; in contrast to other learning-based approaches, e.g., [SGF16,
REM+16, FSG17, RUBG17, SM17, DQN17, WHY+17, VDR+17, HLH+17, YRM+19], we do not
require full supervision during training. Both characteristics render our approach useful for
robotic scenarios where full supervision is often not available such as in autonomous driving,
e.g., on KITTI [GLU12], or indoor robotics, e.g., on Kinect [YRM+19].

On two newly created synthetic shape completion benchmarks, derived from ShapeNet’s
cars and ModelNet10, as well as on real data from KITTI and, we demonstrated that AML
outperforms related data-driven approaches [ESL16, GAGM15] while being significantly faster.
We further showed that AML is able to compete with fully-supervised approaches [DQN17],
both quantitatively and qualitatively, while using only 3− 10% supervision or less. In contrast to
[NXS12, BCLS13, DPRR13, HSP14, RGT+15, LDGN15, ESL16, ESL17], we additionally showed
that AML is able to generalize across object categories without category supervision during
training. On Kinect, we also demonstrated that our AML approach is able to generalize
from very few training examples. In contrast to [WSK+15, GFRG16, SGF16, FMAJB16, DQN17,
LYF17, HLH+17, FSG17], we considered resolutions up to 48×108×48 and 643 voxels as well as
significantly sparser observations. Overall, our experiments demonstrate two key advantages of
the proposed approach: significantly reduced runtime and increased performance compared to
data-driven approaches and no need for ground truth compared to learning-based approaches
showing that amortizing inference is highly effective.



II
U n d e r s ta n d i n g A d v e r s a r i a l

E x a m p l e s a n d Tr a i n i n g

In this second part, we intend to understand the phenomenon of ad-
versarial examples. These are imperceptibly perturbed images causing
misclassification. Despite good performance on test sets, adversarial
examples are able to fool almost any deep neural network. Thus, it is
crucial to understand why these adversarial examples exist in order
to improve robustness against such attacks. For example, a popular
approach to obtain adversarially robust models is adversarial training,
i.e., injecting adversarial examples into the training procedure. How-
ever, it is often observed that adversarial training leads to reduced
accuracy and easily overfits. For wide-spread use of adversarial train-
ing both problems have to be understood and addressed.
In Chapter 4, we find that adversarial examples tend to leave the
underlying data manifold, explaining why normally trained models
are easily fooled. Furthermore, by considering on-manifold adversarial
examples that are explicitly constrained to the data manifold, we show
that there is no inherent trade-off between robustness and accuracy.
Instead, the robustness-accuracy trade-off of adversarial training is
caused by higher sample complexity.
Subsequently, in Chapter 5, we intend to understand why some adver-
sarially trained models provide higher robustness than others. To this
end, we particularly consider the phenomenon of robust overfitting
where robustness does not reduce continuously throughout training.
We show that better robustness correlates strongly with finding flatter
minima in the robust loss landscape w.r.t. to perturbations in the
model’s weights. Based on new robust flatness measures, we find
that favoring flatness during training avoids robust overfitting and
improves overall robustness.
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Deep deep learning enabled significant progress on almost all computer vision problems
as well as in many other domains such as natural language processing, speech recog-
nition or robotics. However, the ever-increasing size of deep neural networks and their

black-box nature raises many open questions including their failure modes. In the following,
we switch focus to one particular kind of failure mode: adversarial examples, imperceptibly
perturbed images causing misclassification, as first reported for deep neural networks in
[SZS+14]. Obtaining models that are robust against adversarial examples and generalize well
is an open problem. A recent hypothesis [SZC+18, TSE+19] even states that both robust and
accurate models are impossible, i.e., adversarial robustness and generalization are conflicting
goals. In an effort to clarify the relationship between robustness and generalization, we
assume an underlying, low-dimensional data manifold and show that:

1. regular adversarial examples leave the manifold;

2. on-manifold adversarial examples, explicitly constrained to the manifold, exist;

3. on-manifold adversarial examples are generalization errors, and on-manifold adversarial
training boosts generalization;

4. regular robustness and generalization are not necessarily contradicting goals.

These assumptions imply that both robust and accurate models are possible. However, different
deep neural networks (architectures, training strategies etc.) can exhibit different robustness
and generalization characteristics. To confirm our claims, we present experiments on synthetic
data as well as on MNIST [CATvS17], Fashion-MNIST [XRV17] and CelebA [LLWT15].

This chapter is based on [SHS19]: As first author, David Stutz ran all experiments and was
the main writer of the paper. However, the theoretical argument for off-manifold adversarial
examples in Section 4.2.2 was contributed by Matthias Hein. This work was also presented at
the Workshop on Uncertainty and Robustness in Deep Learning (UDL) held in conjunction
with ICML 2019 and the Heidelberg Laureate Forum (HLF) 2019.

The code for this chapter can be found on GitHub1.
1https://github.com/davidstutz/cvpr2019-adversarial-robustness
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Figure 4.1: On- and Off-Manifold Adversarial Examples: We consider adversarial examples,
shown with their (normalized) difference to the original image, in the context of the underlying
manifold, e.g., class manifolds “5” and “6” on MNIST [CATvS17]. This allows us to study their
relation to generalization. Regular adversarial examples are not constrained to the manifold,
c.f. (a), and often result in (seemingly) random noise patterns. In fact, we show that they leave
the manifold. However, adversarial examples on the manifold can be found as well, c.f. (b),
resulting in meaningful manipulations of the image content. However, care needs to be taken
that the actual, true label w.r.t. the manifold does not change, c.f. (c).

4.1 Introduction

Adversarial robustness describes the ability to defend against adversarial examples [SZS+14],
imperceptibly perturbed images causing misclassification. These adversarial attacks pose severe
security threats, as demonstrated against Clarifai.com [LCLS17, BHLS17] or Google Cloud
Vision [IEAL18]. Despite these serious risks, many proposed defenses have been ineffective.
Only adversarial training, i.e., training on adversarial examples [GSS15, MMS+18], has been
shown to work well in practice [ACW18, AC18] – at the cost of computational overhead and
reduced accuracy. Overall, the problem of adversarial robustness is left open and poorly
understood.

The phenomenon of adversarial examples itself, i.e., their mere existence, has also received
considerable attention. Early explanations attributing adversarial examples to “rare pockets” of
the classification surface [SZS+14] or linearities in deep networks [GSS15] have been superseded
by the manifold assumption [TG16, GMF+18]: adversarial examples are assumed to leave the
underlying, low-dimensional but usually unknown data manifold. However, only [SKN+18]
provide experimental evidence supporting this assumption. Yet, on a simplistic toy dataset,
Gilmer et al. [GMF+18] also found adversarial examples on the manifold, as also tried on real
datasets [BCZ+18, SSKE18, ZDS18], rendering the manifold assumption questionable. Still, the
manifold assumption fostered research on novel defenses [IJA+17, PS18, SRBB19].

Beyond the existence of adversarial examples, their relation to generalization is an important
open problem. Recently, it has been argued [SZC+18, TSE+19] that there exists an inherent
trade-off, i.e., robust and accurate models seem impossible. While Tsipras et al. [TSE+19]
provide a theoretical argument on a toy dataset, Su et al. [SZC+18] evaluate the robustness
of different models on ImageNet [RDS+15]. However, these findings have to be questioned
given the results in [RGB16, GMF+18] showing the opposite, i.e., better generalization helps
robustness.

In order to address this controversy, and in contrast to [RGB16, SZC+18, TSE+19], we
consider adversarial robustness in the context of the underlying manifold. In particular, to
break the hypothesis down, we explicitly ask whether adversarial examples leave, or stay on,
the manifold. On MNIST [LBBH98, CATvS17], for example, considering the class manifolds
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for “5” and “6”, as illustrated in Figure 4.1, adversarial examples are not guaranteed to lie on
the manifold, c.f. Figure 4.1 (a). Adversarial examples can, however, also be constrained to the
manifold, c.f. Figure 4.1 (b). In this case, it is important to ensure that the adversarial examples
do not actually change their label, i.e., are more likely to be a “6” than a “5”, as in Figure 4.1
(c). For clarity, we refer to unconstrained adversarial examples, as illustrated in Figure 4.1 (a),
as regular adversarial examples; in contrast to adversarial examples constrained to the manifold,
so-called on-manifold adversarial examples.

Contributions: Based on this distinction between regular robustness against unconstrained
adversarial examples and on-manifold robustness against adversarial examples constrained to
the manifold, we show:

1. regular adversarial examples leave the manifold;

2. adversarial examples constrained to the manifold, i.e., on-manifold adversarial examples,
exist and can be computed using an approximation of the manifold;

3. on-manifold robustness is essentially generalization;

4. and regular robustness and generalization are not necessarily contradicting goals, i.e.,
for any arbitrary but fixed model, better generalization through additional training data
does not worsen robustness.

We conclude that both robust and accurate models are possible and can, e.g., be obtained
through adversarial training on larger training sets. Additionally, we propose on-manifold
adversarial training to boost generalization in settings where the manifold is known, can be
approximated, or invariances of the data are known. We present experimental results on a
novel MNIST-like, synthetic dataset with known manifold, as well as on MNIST [CATvS17],
Fashion-MNIST [XRV17] and CelebA [LLWT15].

4.2 Adversarial Robustness and Generalization

To clarify the relationship between adversarial robustness and generalization, we explicitly
distinguish between regular and on-manifold adversarial examples, as illustrated in Figure 4.1.
Then, the hypothesis [SZC+18, TSE+19] that robustness and generalization are contradicting
goals is challenged in four arguments: regular unconstrained adversarial examples leave
the manifold; adversarial examples constrained to the manifold exist; robustness against on-
manifold adversarial examples is essentially generalization; and robustness against regular
adversarial examples is not influenced by generalization when controlled through the amount
of training data. Altogether, our results imply that adversarial robustness and generalization
are not opposing objectives and both robust and accurate models are possible but require
higher sample complexity.

4.2.1 Experimental Setup

Datasets: We use MNIST [CATvS17], F(ashion)-MNIST [XRV17] and CelebA [LLWT15] for
our experiments (240k/40k, 60k/10k and 182k/20k training/test images); CelebA has been
re-sized to 56×48 and we classify “Male” vs. “Female”.

Our synthetic dataset, FONTS, consists of letters “A” to “J” from different fonts that are
randomly transformed using a spatial transformer network [JSZK15] such that the generation
process is completely differentiable. Specifically, we consider 1000 Google Fonts obtained from
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FONTS EMNIST F-MNIST

Figure 4.2: Random Sampled from VAE-GANs: For FONTS (left), MNIST (middle) and
Fashion (right), we show random samples from the learned, class-specific VAE-GANs used to
craft on-manifold adversarial examples. Our VAE-GANs generate realistic looking samples.
However, we also include problematic samples illustrating the discrepancy between true and
approximated data distribution.

the corresponding GitHub repository2, manually curated to exclude, e.g., fonts consisting of
symbols. The obtained letters are transformed using translation, shear, scaling and rotation,
uniformly sampled from [−0.2, 0.2], [−0.5, 0.5], [0.75, 1.15], and [−π/2, π/2], respectively. With
112 transformations per letter, we obtain 1.12Mio images of size 28×28, split into 960k training
images and 160k test images (of which we only use 40k for simplicity). To make the generation
process differentiable w.r.t. the transformation parameters, the spatial transformer network is
applied using the transformation matrix

[
cos(r)s − sin(r)sλ1 − sin(r)s + cos(r)sλ1 t1

cos(r)sλ2 + sin(r)s − sin(r)sλ2 + cos(r)s t2

]
, (4.1)

with translation [t1, t2], shear [λ1, λ2], scale s and rotation r. Overall, this results in FONTS
offering full control over the manifold, i.e., the transformation parameters, font and class, with
differentiable generative model, i.e., decoder.

Models: We consider classifiers with three (four on CelebA) convolutional layers (4× 4 kernels;
stride 2; 16, 32, 64 channels), each followed by ReLU activations and batch normalization [IS15b],
and two fully connected layers. The models are trained using ADAM [KB15b], with learning
rate 0.01 (decayed by 0.95 per epoch), weight decay 10−4 and batch size 100, for 20 epochs.
Most importantly, to control their generalization performance, we use N training images, with
N between 250 and 40k. For each N, we train 5 models with random weight initialization
[GB10b] and report averages.

Approximating Manifolds: We learn class-specific VAE-GANs to approximate the underlying
manifold. In contrast to [LSLW16], however, we use a reconstruction loss on the image,
not on the discriminator’s features, and in contrast to [RLWFM17], we use the standard
Kullback-Leibler divergence to regularize the latent space. Specifically, the model consists of
an encoder enc, approximating the posterior q(z|x) ≈ p(z|x) of latent code z given image x, a
(deterministic) decoder dec, and a discriminator dis. During training, the sum of the following

2https://github.com/google/fonts

https://github.com/google/fonts
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losses is minimized:

Lenc = Eq(z|x) [λ∥x − dec(z)∥1] + KL(q(z|x)|p(z)) (4.2)

Ldec = Eq(z|x) [λ∥x − dec(z)∥1 − log(dis(dec(z)))] (4.3)

Ldis = −Ep(x) [log(dis(x))]− Eq(z|x) [log(1 − dis(dec(z)))] (4.4)

using a standard Gaussian prior p(z). Here, q(z|x) is modeled by predicting the mean µ(x)
and variance σ2(x) such that q(z|x) = N (z; µ(x), diag(σ2(x))) and the weighting parameter λ
controls the importance of the L1 reconstruction loss relative to the Kullback-Leibler divergence
KL and the adversarial loss for decoder and discriminator. As in [KW14b], we use the
reparameterization trick with one sample to approximate the expectations in Equation (4.2),
(4.3) and (4.4), and the Kullback-Leibler divergence KL(q(z|x)|p(z)) is computed analytically.

The encoder, decoder and discriminator consist of three (four for CelebA) (de-) convolutional
layers (4×4 kernels; stride 2; 64, 128, 256 channels), followed by ReLU activations and batch
normalization [IS15b]. The encoder uses two fully connected layers to predict mean and
variance and the discriminator uses two fully connected layers to predict logits. We tuned λ
to dataset- and class-specific values: on FONTS, λ = 3 worked well for all classes, on MNIST,
λ = 2.5 except for classes “0” (λ = 2.75), “1” (λ = 5.6) and “8” (λ = 2.25), on Fashion, λ = 2.75
worked well for all classes, on CelebA λ = 3 worked well for both classes. Finally, we use
a learning rate 0.005 (decayed by 0.9 every epoch), weight decay 10−4 and batch size 100
for 10, 30, 60 and 30 epochs on FONTS, MNIST, Fashion and CelebA, respectively. Random
samples of the class-specific VAE-GANs are shown in Figure 4.2. Especially on MNIST and
FONTS, our VAE-GANs generate realistic looking samples with sharp edges. However, we
also show several problematic random samples, illustrating the discrepancy between the true
data distribution and the approximation – as particularly highlighted on FONTS.

Attack: Given an image-label pair (x, y) from an unknown data distribution p and a
classifier f , an adversarial example is a perturbed image x̃ = x + δ which is misclassified by
the model, i.e., f (x̃) ̸= y. While our results can be confirmed using other attacks and norms,
for clarity, we concentrate on the L∞ white-box attack by Madry et al. [MMS+18] that directly
maximizes the training loss,

maxδ L( f (x + δ), y) s.t. ∥δ∥∞ ≤ ϵ, x̃i ∈ [0, 1], (4.5)

using projected gradient descent. Here, L is the cross-entropy loss and x̃ = x + δ. The ϵ-
constraint is meant to ensure perceptual similarity. We run 40 iterations of ADAM [KB15b]
with learning rate 0.005 and consider 5 restarts, (distance and direction) uniformly sampled
in the ϵ-ball for ϵ = 0.3. Optimization is stopped as soon as the predicted label changes, i.e.,
f (x̃) ̸= y. We attack 1000 test images.

Adversarial Training: An established defense is adversarial training, i.e., training on
adversarial examples crafted during training. [MMS+18] considers the min-max problem

minw E
[
max∥δ∥∞≤ϵ,xn,i+δi∈[0,1] L( f (xn+δ; w), yn)

]
(4.6)

where w are the classifier’s weights and xn the training images. We considered different
variants [SZS+14, GSS15, MMS+18] and decided to follow common practice and train on 50%
clean images and 50% adversarial examples [SZS+14]. For ϵ = 0.3, the attack (for the inner
optimization problem) is run for full 40 iterations, i.e., is not stopped at the first adversarial
example found. Robustness of the obtained deep neural network is measured by computing
the attack success rate, i.e., the fraction of successful attacks on correctly classified test images,
as, e.g., in [CW17b], for a fixed ϵ; lower success rate indicates higher robustness.
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Figure 4.3: Regular and On-Manifold Adversarial Examples on our synthetic dataset, FONTS,
consisting of randomly transformed characters “A” to “J”, MNIST [CATvS17], Fashion [XRV17]
and CelebA [LLWT15]. On FONTS, the manifold is known by construction. In the other cases,
the class manifolds have been approximated using VAE-GANs [LSLW16, RLWFM17]. The
difference (normalized; or their magnitude on CelebA) to the original test image reveals the
(seemingly) random noise patterns of regular adversarial examples in contrast to reasonable
concept changes of on-manifold adversarial examples.

4.2.2 Adversarial Examples Leave the Manifold

The idea of adversarial examples leaving the manifold is intuitive on MNIST where particular
background pixels are known to be constant, see Figure 4.3. If an adversarial example x̃
manipulates these pixels, it has zero probability under the data distribution and its distance
to the manifold, i.e., the distance to its projection π(x̃) onto the manifold, should be non-
zero. On FONTS, with known generative process in the form of a decoder dec mapping
latent variables z to images x, the projection is obtained iteratively: π(x̃) = dec(z̃) with
z̃ = arg minz ∥dec(z)− x̃)∥2 and z constrained to valid transformations (font and class, known
from the test image x, stay constant). To this end, we use 100 iterations of ADAM with learning
rate 0.09, decayed every 10 iterations by factor 0.95. Additional iterations did not improve
the results. On MNIST, as illustrated in Figure 4.4, the manifold is approximated using 50
nearest neighbors and the projection π(x̃) onto the sub-space spanned by the x-centered nearest
neighbors is computed through least squares. Specifically, we consider the vector δ = x̃ − x,
i.e., we assume that the “adversarial direction” originates at the mean x̄ = 1/50 ∑50

i=1 xi. Then,

x

y

z
x

x3

x2

x1

x4

x̃

‖x̃− π(x̃)‖2

regular
adversarial example

Class Manifold “5”

Figure 4.4: Off-Manifold Distance Computation. The distance
of a regular adversarial example x̃ to the manifold, is computed
as the distance to its orthogonal projection π(x̃): ∥x̃ − π(x̃)∥2.
Here, the manifold is approximated linearly using least squares
based on 50 nearest neighbors xi of x. Then, large distances
indicate that the adversarial example left the manifold, which
we find to hold for both synthetic as well as real datasets.
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Figure 4.5: Adversarial Examples Leave the Data Manifold: Distance of adversarial examples
to the true, on FONTS (left), or approximated, on FONTS, MNIST and Fashion (right), manifold.
We show normalized histograms of the L2 distance of adversarial examples to their projections
onto the manifold. Regular adversarial examples exhibit a significant distance to the manifold,
clearly distinguishable from on-manifold adversarial examples and test images. We also note
that, depending on the VAE-GAN approximation, on-manifold adversarial examples are hardly
distinguishable from test images.

we solve

β∗ = arg min
β

∥Xβ − δ∥2
2 (4.7)

where the columns Xi are the vectors xi − x̄. The projection π(x̃) is obtained as π(x̃) = Xβ∗.
The same approach can be applied to projecting the test image x. Note that it is crucial to
consider the adversarial direction δ itself, instead of the adversarial example x̃ because ∥δ∥2
is small by construction, i.e., the projections of x̃ and x are very close. On both FONTS and
MNIST, the distance ∥x̃ − π(x̃)∥2 is considered to assess whether the adversarial example x̃
actually left the manifold.

On FONTS, Figure 4.5 (left) shows that regular adversarial examples clearly exhibit non-
zero distance to the manifold. In fact, the projections of these adversarial examples to the
manifold are almost always the original test images. As a result, the distance to the manifold is
essentially the norm of the corresponding perturbation: ∥x̃ − π(x̃)∥2 ≈ ∥x̃ − x∥2 = ∥δ∥2. This
suggests that the adversarial examples leave the manifold in an almost orthogonal direction.
On MNIST and Fashion, in Figure 4.5 (right), these results can be confirmed in spite of the
crude local approximation of the manifold. Again, regular adversarial examples seem to leave
the manifold almost orthogonally, i.e., their distance to the manifold coincides with the norm
of the corresponding perturbations. These results show that regular adversarial examples
are essentially off-manifold adversarial examples. This finding is intuitive as for well-trained
classifiers, leaving the manifold should be the “easiest” way to fool it.

Intuition and Theoretical Argument: Having empirically shown that regular adversarial
examples tend to leave the manifold, often in a nearly orthogonal direction, we also discuss a
theoretical argument supporting this observation. The main assumption is that the training loss
is constant on the manifold (normally close to zero) due to training and proper generalization,
i.e., low training and test loss. Thus, the loss gradient is approximately orthogonal to the
manifold as this is the direction to increase the loss most efficiently.

More formally, let f (x) denote the classifier which – for simplicity – takes inputs x ∈ Rd

and predicts outputs y ∈ RK for K classes. We assume both the classifier and the used loss,
e.g., cross-entropy loss, to be differentiable. We further expect the data to lie on a manifold M
and the loss to be constant on M∩ B(x, ϵ) where B(x, ϵ) = {x′ ∈ Rd : ∥x′ − x∥ ≤ ϵ} denotes
the ϵ-ball around x. Let

g(x) = E [L( f (x), y)|x] (4.8)
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Figure 4.6: On-Manifold Adversarial Examples:
We constrain adversarial examples to the manifold
using learned, class-specific VAE-GANs [LSLW16,
RLWFM17]. The perturbation ζ is obtained via
Equation (4.11) and added to the latent code
z = enc(x) yielding the adversarial example x̃ =
dec(z+ ζ) with difference δ = x̃ − x in image space.
On-manifold adversarial examples tend to corre-
spond to visually more meaningful changes.

be the conditional expectation of the loss L. Then, by the mean value theorem, there exists
θ(x′) ∈ [0, 1] for each x′ ∈ M∩ B(x, ϵ) such that

0 = g(x′)− g(x) =
〈
∇g(θ(x′)x + (1 − θ(x′))x′), x′ − x

〉
(4.9)

As this holds for all ϵ > 0 and as ϵ → 0, every vector x′ − x becomes a tangent of M at x and

lim
ϵ→0

∇g(θ(x′)x + (1 − θ(x′))x′) = ∇g(x), (4.10)

it holds that ∇g(x) is orthogonal to the tangent space of M at x. As ∇g(x) is the gradient of
the expected loss, it implies that adversarial examples leave the manifold M in order to fool
the classifier f (x).

4.2.3 On-Manifold Adversarial Examples

Given that regular adversarial examples leave the manifold, we intend to explicitly compute
on-manifold adversarial examples. To this end, we assume our data distribution p(x, y) to
be conditional on the latent variables z, i.e., p(x, y|z), corresponding to the underlying, low-
dimensional manifold. On this manifold, however, there is no notion of “perceptual similarity”
in order to ensure label invariance, i.e., distinguish valid on-manifold adversarial examples,
Figure 4.1 (b), from invalid ones that change the actual, true label, Figure 4.1 (c):
Definition 1 (On-Manifold Adversarial Example). Given the data distribution p, an on-manifold
adversarial example for x with label y is a perturbed version x̃ such that f (x̃) ̸= y but
p(y|x̃) > p(y′|x̃)∀y′ ̸= y.

Note that the posteriors p(y|x̃) correspond to the true, unknown data distribution. Any
on-manifold adversarial example x̃ that violates Definition 1 changed its actual, true label.

In practice, we assume access to an encoder and decoder modeling the (class-conditional)
distributions p(z|x, y) and p(x|z, y) – in our case, achieved using VAE-GANs [LSLW16,
RLWFM17]. Then, given the encoder enc and decoder dec and as illustrated in Figure 4.6, we
obtain the latent code z = enc(x) and compute the perturbation ζ by maximizing:

maxζ L( f (dec(z + ζ)), y) s.t. ∥ζ∥∞ ≤ η. (4.11)

The image-constraint, i.e., dec(z + ζ) ∈ [0, 1], is enforced by the decoder and the η-constraint
can, again, be enforced by projection. We can additionally enforce a constraint on z + ζ, e.g.,
corresponding to a prior on z. Label invariance, as in Definition 1, is ensured by considering
only class-specific encoders and decoders, i.e., the data distribution is approximated per class.
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We use η = 0.3 and the same optimization procedure as for Equation (4.5). On approximated
manifolds, the perturbation z + ζ is additionally constrained to [−2, 2]10, corresponding to a
truncated normal prior from the class-specific VAE-GANs. We attack 2500 test images.

On-manifold adversarial examples obtained through Equation (4.11) are similar to those
crafted in [GMF+18, ACW18, ZDS18, SRBB19]. However, in contrast to [GMF+18, ACW18,
SRBB19], we directly compute the perturbation ζ on the manifold instead of computing the
perturbation δ in the image space and subsequently projecting x + δ to the manifold. Also
note that enforcing any similarity constraint through a norm on the manifold is significantly
more meaningful compared to using a norm on the image space, as becomes apparent when
comparing the obtained on-manifold adversarial examples in Figure 4.3 to their regular
counterparts. Compared to [ZDS18], we find on-manifold adversarial examples using a
gradient-based approach instead of randomly sampling the latent space.

Figure 4.3 shows on-manifold adversarial examples for all datasets, which we found
significantly harder to obtain compared to their regular counterparts. On FONTS, using
the true, known class manifolds, on-manifold adversarial examples clearly correspond to
transformations of the original test image – reflecting the true latent space. For the learned
class manifolds, the perturbations are less pronounced, often manipulating boldness or details
of the characters. Due to the approximate nature of the learned VAE-GANs, these adversarial
examples are strictly speaking not always part of the true manifold – as can be seen for the
irregular “A” (Figure 4.3, 6th column). On MNIST and Fashion, on-manifold adversarial
examples represent meaningful manipulations, such as removing the tail of a hand-drawn “8”
(Figure 4.3, 10th column) or removing the collar of a pullover (Figure 4.3, 11th column), in
contrast to the random noise patterns of regular adversarial examples. However, these usually
incur a smaller change in the images space which also explains why regular, unconstrained
adversarial examples almost always leave the manifold. Still, on-manifold adversarial examples
are perceptually close to the original images. On CelebA, the quality of on-manifold adversarial
examples is clearly limited by the approximation quality of our VAE-GANs. Finally, Figure 4.5
(right) shows that on-manifold adversarial examples are closer to the manifold than regular
adversarial examples – in spite of the crude approximation of the manifold on MNIST.

4.2.4 On-Manifold Robustness is Essentially Generalization

We argue that on-manifold robustness is not different from generalization: as on-manifold
adversarial examples have non-zero probability under the data distribution, they are merely
generalization errors. This is shown in Figure 4.7 (top left) where test error and on-manifold
success rate on FONTS are shown. As expected, better generalization, i.e., using more training
images N, also reduces on-manifold success rate. In order to make this relationship explicit,
Figure 4.7 (bottom) plots on-manifold success rate against test error. Then, especially for
FONTS and MNIST, the relationship of on-manifold robustness and generalization becomes
apparent. On Fashion, the relationship is less pronounced because on-manifold adversarial
examples, computed using our VAE-GANs, are not close enough to real generalization errors.
However, even on Fashion, the experiments show a clear relationship between on-manifold
robustness and generalization.
On-Manifold Adversarial Training Boosts Generalization: Given that generalization pos-
itively influences on-manifold robustness, we propose to adapt adversarial training to the
on-manifold case in order to boost generalization:

minw E
[
max∥ζ∥∞≤η L( f (dec(zn + ζ); w), yn)

]
. (4.12)
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Figure 4.7: On-Manifold Robustness and Generalization: On-manifold robustness is strongly
related to generalization, as shown on FONTS, MNIST and Fashion considering on-manifold
success rate and test error. Top: Test error and on-manifold success rate shown in relation to
the number of training images. As test error reduces, so does on-manifold success rate. Bottom:
On-manifold success rate plotted against test error reveals the strong relationship between
on-manifold robustness and generalization.

with zn = dec(xn) being the latent codes corresponding to training images xn. Then, on-
manifold adversarial training corresponds to robust optimization w.r.t. the true, or approxi-
mated, data distribution. For example, with the perfect decoder on FONTS, the inner optimiza-
tion problem finds “hard” images irrespective of their likelihood under the data distribution.
For approximate dec, the benefit of on-manifold adversarial training depends on how well
the true data distribution is matched, i.e., how realistic the obtained on-manifold adversarial
examples are. In our case, this depends on the quality of the learned VAE-GANs.

Instead of approximating the manifold using generative models, we can exploit known
invariances of the data. Then, adversarial training can be applied to these invariances, assuming
that they are part of the true manifold. In practice, this can, for example, be accomplished using
adversarial deformations [ETSM17, XZL+18, AAG19], i.e., adversarially crafted transformations
of the image. For example, as on FONTS, we consider 6-degrees-of-freedom transformations
corresponding to translation, shear, scaling and rotation:

minw E
[
max∥t∥∞≤η,t∈mR6 L( f (T(xn; t); w), yn)

]
. (4.13)

where T(x; t) denotes the transformation of image x with parameters t and the η-constraint
ensures similarity and label invariance. Again, the transformations can be applied using spatial
transformer networks [JSZK15] such that T is differentiable and t can be constrained to a
reasonable space of transformations. We note that a similar approach has been used by Fawzi
et al. [FSTF16] to boost generalization on, e.g., MNIST [LBBH98]. However, the approach was
considered as an adversarial variant of data augmentation and not motivated through the lens
of on-manifold robustness. We refer to Equation (4.13) as adversarial transformation training
and note that, on FONTS, this approach is equivalent to on-manifold adversarial training as
the transformations coincide with the actual, true manifold by construction. We also include a
data augmentation baseline, where the transformations t are applied randomly.
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Figure 4.8: Left: Class-Agnostic On-Manifold Adversarial Examples. On-manifold adversarial
examples crafted using class-agnostic VAE-GANs on MNIST. We show examples illustrating the
problematic of unclear class boundaries within the learned manifold. On-manifold adversarial
examples are not guaranteed to be label invariant, i.e., they may change the actual, true label
according to the approximate data distribution. Right: Relationship to Generalization. Test
error and on-data-manifold success rate on FONTS and MNIST. Using class-agnostic VAE-
GANs, without clear class boundaries, on-manifold adversarial training loses its effectiveness –
the on-manifold adversarial examples cross the true class boundaries too often. The strong
relationship between on-manifold robustness and generalization can still be confirmed.

We demonstrate the effectiveness of on-manifold adversarial training in Figure 4.7. On
FONTS, with access to the true manifold, on-manifold adversarial training is able to boost
generalization significantly, especially for low N, i.e., few training images. Our VAE-GAN
approximation on FONTS seems to be good enough to preserve the benefit of on-manifold
adversarial training. On MNIST and Fashion, the benefit reduces with the difficulty of ap-
proximating the manifold; this is the “cost” of imperfect approximation. While the benefit is
still significant on MNIST, it diminishes on Fashion. However, both on MNIST and Fashion,
identifying invariances and utilizing adversarial transformation training recovers the boost
in generalization, especially in contrast to the random data augmentation baseline. Overall,
on-manifold adversarial training is a promising tool for improving generalization and we
expect its benefit to increase with better generative models.

From Class Manifolds to Data Manifold: So far, we considered approximating the manifold
using class-specific VAE-GANs. Instead, we can also train class-agnostic VAE-GANs where
the marginals p(x) are approximated instead of the class-conditionals p(x|y). This means that
images from different classes are embedded in the same latent space. Then, however, ensuring
label invariance, as required by Definition 1 becomes more difficult. We attempt to ensure
label invariance through a particularly small L∞-constraint on the perturbation, specifically
∥ζ∥∞ ≤ η with η = 0.1. Still, as can be seen in Figure 4.8 (left), on-manifold adversarial
examples might cross class boundaries, i.e., they change their actual label rendering them
invalid according to our definition.

In Figure 4.8 (right), we clearly distinguish between on-class-manifold and on-data-manifold
adversarial training, corresponding to the used class-specific or -agnostic VAE-GANs. Robust-
ness, however, is measured w.r.t. on-data-manifold adversarial examples. As can be seen, the
positive effect of on-manifold adversarial training diminishes when using on-data-manifold
adversarial examples during training. Both, on FONTS and MNIST, generalization slightly
decreases in comparison to normal training because adversarial examples are not useful for
learning the task if label invariance cannot be ensured. When evaluating robustness against
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Figure 4.9: Adversarial Robustness and Generalization: Regular robustness is not related to
generalization, as demonstrated on FONTS, MNIST and Fashion considering test error and
(regular) success rate. On FONTS (left), success rate is not influenced by test error, except for
adversarial training. Plotting success rate against test error highlights the independence of
robustness and generalization; however, different training strategies exhibit different robustness-
generalization characteristics.

on-data-manifold adversarial examples, however, the relation of on-data-manifold robustness
to generalization can clearly be seen. Overall, this shows that this relationship also extends to
more general, less strict definitions of on-manifold adversarial examples.

4.2.5 Regular Robustness is Independent of Generalization

We argue that generalization, as measured on the manifold w.r.t. the data distribution, is mostly
independent of robustness against regular, possibly off-manifold, adversarial examples when
varying the amount of training data. Specifically, in Figure 4.9 (left) for FONTS, it can be
observed that – except for adversarial training – the success rate is invariant to the test error.
This can best be seen when plotting the success rate against test error for different numbers of
training examples, c.f. Figure 4.9 (middle left): only for adversarial training there exists a clear
relationship. For the remaining training schemes success rate is barely influenced by the test
error. In particular, better generalization does not worsen robustness. Similar behavior can be
observed on MNIST and Fashion, see Figure 4.9 (right). Here, it can also be seen that different
training strategies exhibit different characteristics w.r.t. robustness and generalization. Overall,
regular robustness and generalization are not necessarily contradicting goals.

As mentioned in Section 4.1, these findings are in contrast to related work [SZC+18, TSE+19]
claiming that an inherent trade-off between robustness and generalization exists. For example,
Tsipras et al. [TSE+19] use a synthetic toy dataset to theoretically show that no model can be
both robust and accurate (on this dataset). However, they allow the adversary to produce
perturbations that change the actual, true label w.r.t. the data distribution. That is, the consid-
ered adversarial examples are not adversarial examples according to Definition 1, as discussed
in detail below. Thus, it is unclear whether the suggested trade-off actually exists for real
datasets. Our experiments, at least, seem to indicate the contrary. Similarly, Su et al. [SZC+18]
experimentally show a trade-off between adversarial robustness and generalization by studying
different models on ImageNet [RDS+15]. However, Su et al. compare the robustness and
generalization characteristics of different models (i.e., different architectures, training strategies
etc.), while we found that the generalization performance does not influence robustness for
any arbitrary, but fixed model.
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Figure 4.10: Illustration of the Toy Dataset of
[TSE+18]: For labels y = 1 and y = −1, the two-
dimensional observations x ∈ {−1, 1}×R are plotted.
The first dimension x1 mirrors the label with probability
0.9; the second dimension x2 is drawn from a Gaussian
N (y3, I), i.e., η from the text is 3. As illustrated on the
left, perturbing an observation x with label y = 1 but
x1 = −1 by 2η = 6 results in an adversarial example x̃
indistinguishable from observations with label y = −1.

Discussion of [TSE+19]: Tsipras et al. argue that there exists an inherent trade-off between
regular robustness and generalization based on a simple toy example. We follow the notation of
[TSE+19], but restrict ourselves to the two-dimensional case. Note that [TSE+19] also considers
the general d-dimensional case. The conclusions, however, remain the same. Specifically, for
labels y = 1 and y = −1 with p(y = 1) = p(y = −1) = 0.5, the observations x ∈ {−1, 1}×R

are drawn as follows:

p(x1|y) =
{

p if x1 = y
1 − p if x1 = −y

p(x2|y) = N (x2; yη, 1), (4.14)

where η defines the degree of overlapping between the two classes and p ≥ 0.5. Figure 4.10
illustrates this dataset for p = 0.9 and η = 3. For a L∞-bounded adversary with ϵ ≥ 2η, Tsipras
et al. show that no model can be both accurate and robust. Specifically, for x with y = 1 but
x1 = −1 and x2 = η, we consider replacing x2 with x̃2 = x2 − 2η = −η, as considered in
[TSE+19]. However, this adversary does not produce proper adversarial examples according
to Definition 1. Note that, in this case and for p < 1, p(x) > 0 everywhere, meaning that our
definition of on-manifold adversarial examples applies. Indeed,

p(y = 1|x = x̃) = p(y = 1|x1 = −1) · p(y = 1|x2 = −η) = (1 − p) · N (x2 = −η; η, 1)
̸> p · N (x2 = −η;−η, 1)
= p(y = −1|x1 = −1) · p(y = −1|x2 = −η) = p(y = −1|x = x̃)

(4.15)

which contradicts our definition. Thus, the suggested trade-off is questionable. However, we
note that this argument explicitly depends on our definition of proper and invalid adversarial
examples. Other definitions of adversarial examples or adversarial robustness, e.g., in the
context of the adversarial loss defined in [TSE+19], may lead to different conclusions.

4.2.6 Discussion

Our results imply that robustness and generalization are not necessarily conflicting goals,
as believed in related work [SZC+18, TSE+19]. This means, in practice, for any arbitrary
but fixed model, better generalization will not worsen regular robustness. Different models
(architectures, training strategies etc.) might, however, exhibit different robustness and general-
ization characteristics, as also shown in [RGB16, SZC+18]. For adversarial training, on regular
adversarial examples, the commonly observed trade-off between robustness and generalization
is explained by the tendency of adversarial examples to leave the manifold. As a result, the
network has to learn (seemingly) random, but adversarial, noise patterns in addition to the
actual task at hand, rendering the learning problem harder. On simple datasets, such as MNIST,
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Figure 4.11: Sample Complexity of Adversarial Training: Adversarial training on regular
adversarial examples, potentially leaving the manifold, renders the learning problem more
difficult. Top: With roughly 1.5 to 2 times the training data, adversarial training can still reach
the same accuracy as normal training; results for ResNet-13 [HZRS16a]. Bottom: Additionally,
the trade-off can be controlled by combining regular and on-manifold adversarial training;
results averaged over 3 models.

these adversarial directions might avoid overfitting. On harder tasks, e.g., FONTS or Fashion,
the discrepancy in test error between normal and adversarial training increases. Our results
also support the hypothesis that regular adversarial training has higher sample complexity
[SST+18, KH18]. In fact, on FONTS, adversarial training can reach the same accuracy as normal
training with roughly twice the amount of training data, as demonstrated in Figure 4.11 (left).
Furthermore, as illustrated in Figure 4.11 (right), the trade-off between regular robustness and
generalization can be controlled by combining regular and on-manifold adversarial training,
i.e. boost generalization while reducing robustness.

The presented results can also be confirmed on more complex datasets, such as CelebA,
and using different threat models, i.e., attacks. On CelebA, where VAE-GANs have difficulties
approximating the manifold, Figure 4.12 (left) shows that on-manifold robustness still improves
with generalization although most on-manifold adversarial examples are not very realistic,
see Figure 4.3. Similarly, regular robustness is not influenced by generalization. Here, we
also show that the average distance of the perturbation, i.e., average ∥δ∥∞, when used to
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Figure 4.12: Results on CelebA and using Carlini and Wagner Adversarial Examples: On
CelebA, as the class manifolds are significantly harder to approximate, the benefit of on-
manifold adversarial training diminishes. For [CW17b], we used 120 iterations. Our hypotheses
are confirmed, although [CW17b] does not use the training loss as attack objective and the L2
norm changes the similarity-constraint for regular and on-manifold adversarial examples.



4.3 conclusion 63

assess robustness leads to the same conclusions. Similarly, as shown in Figure 4.12 (right),
our findings are confirmed using Carlini and Wagner’s attack [CW17b] with L2-norm – to
show that the results generalize across norms. However, overall, we observed lower success
rates using [CW17b] and the L2 norm. Our results can also be reproduced using transfer
attacks (i.e., black-box attacks, which are generally assumed to be subsumed by white-box
attacks [ACW18]). However, results are generally less pronounced due to significantly lower
success rates of transfer attacks. Finally, these observations can be confirmed using different
architectures such as multi-layer perceptrons, ResNets [HZRS16a] and VGG [SZ15]. These
results can be found in Appendix A.

4.3 Conclusion

In this chapter, we intended to disentangle the relationship between adversarial robustness
and generalization by initially adopting the hypothesis that robustness and generalization are
contradictory [SZC+18, TSE+19]. By considering adversarial examples in the context of the
low-dimensional, underlying data manifold, we formulated and experimentally confirmed four
assumptions. First, we showed that regular adversarial examples indeed leave the manifold, as
widely assumed in related work [TG16, IJA+17, GMF+18, PS18, SRBB19]. Second, we demon-
strated that adversarial examples can also be found on the manifold, so-called on-manifold
adversarial examples, even if the manifold has to be approximated, e.g., using VAE-GANs
[LSLW16, RLWFM17]. Third, we established that robustness against on-manifold adversarial
examples is clearly related to generalization. Our proposed on-manifold adversarial training
exploits this relationship to boost generalization using an approximate manifold, or known
invariances. Fourth, we provided evidence that robustness against regular, unconstrained
adversarial examples and generalization are not necessarily contradicting goals: for any arbi-
trary but fixed model, better generalization, e.g., through more training data, does not reduce
robustness.
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Adversarial training (AT) has become the de facto standard to obtain models robust
against adversarial examples. Besides the robustness-accuracy trade-off discussed
in the previous chapter, AT also exhibits severe robust overfitting: cross-entropy loss

on adversarial examples, so-called robust loss, decreases continuously on training examples,
while eventually increasing on test examples. In practice, this leads to poor generalization
of robustness to new examples. To address this phenomenon, in this chapter, we study the
relationship between robust generalization and flatness of the robust loss landscape in weight
space, i.e., whether robust loss changes significantly when perturbing weights. As flat minima
have been argued to be beneficial for generalization, we propose average- and worst-case
metrics to measure flatness in the robust loss landscape and show a correlation between
good robust generalization and flatness. For example, throughout training, flatness reduces
significantly during overfitting such that early stopping effectively finds flatter minima in the
robust loss landscape. Similarly, AT variants achieving higher adversarial robustness also
correspond to flatter minima. This holds for many popular choices, e.g., AT-AWP [WXW20b],
TRADES [ZYJ+19], AT with self-supervision [HMKS19] or additional unlabeled examples
[CRS+19], as well as simple regularization techniques, e.g., AutoAugment [CZM+19], weight
decay or label noise. For fair comparison, our flatness measures are specifically designed to be
scale-invariant, and we conduct extensive experiments to validate our findings.

This chapter is based on [SHS21]: As first author, David Stutz conducted all experiments
and was the main writer of the paper. A short version was presented at the Workshop on
Uncertainty and Robustness in Deep Learning (UDL) held in conjunction with ICML 2021,
the Workshop on Adversarial Learning Methods for Machine Learning and Data Mining
(AdvML) during KDD 2021, and the Workshop on Adversarial Machine Learning in Real-
World Computer Vision Systems and Online Challenges (AML-CV) at CVPR 2021. Invited
talks were given at the machine learning seminar organized by the Max Planck Institute for
Mathematics in the Sciences and the University of California Los Angeles as well as at the
machine learning security seminar series organized by the University of Cagliari.

Code: The source for this chapter is available on GitHub1.

1https://github.com/davidstutz/iccv2021-robust-flatness
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Figure 5.1: Robust Generalization and Flatness: Robust loss (RLoss, lower is more robust,
y-axis), i.e., cross-entropy loss on PGD adversarial examples [MMS+18], against our average-case
flatness measure of RLoss in weight space (lower is “flatter”, x-axis). Popular AT variants
improving adversarial robustness on CIFAR10, e.g., TRADES [ZYJ+19], AT-AWP [WXW20b] or
AT with self-supervision [HMKS19]/unlabeled examples [CRS+19], also correspond to flatter
minima. Vice-versa, regularization explicitly improving flatness, e.g., Entropy-SGD [CCS+17],
weight decay or weight clipping [SCHS21a], also improve robustness. Across all models, there
is a clear relationship between good robust generalization and flatness in RLoss. •,♦ Our
models, w/o early stopping. ▲ RobustBench [CAS+20a] models w/ early stopping.

5.1 Introduction

In order to obtain robustness against adversarial examples [SZS+14], adversarial training (AT)
[MMS+18] augments training with adversarial examples that are generated on-the-fly. While
many different variants have been proposed, AT is known to require more training data
[KH18, SST+18], generally leading to generalization problems [FZT19]. In fact, robust overfitting
[RWK20] has been identified as the main problem in AT: adversarial robustness on test examples
eventually starts to decrease, while robustness on training examples continues to increase.
This is typically observed as increasing robust loss (RLoss) or robust test error (RErr), i.e., (cross-
entropy) loss and test error on adversarial examples. As a result, the robust generalization gap,
i.e., the difference between test and training robustness, tends to be very large. In [RWK20],
early stopping is used as a simple and effective strategy to avoid robust overfitting. However,
despite recent work tackling robust overfitting [WXW20b, SSJF21, HLOB21], it remains an open
and poorly understood problem.

In “clean” generalization (i.e., on natural examples), overfitting is well-studied and com-
monly tied to flatness of the loss landscape in weight space, both visually [LXTG18] and
empirically [NBMS17, KMN+17, JNM+20]. In general, the optimal weights on test examples
do not coincide with the minimum found on training examples. Flatness ensures that the
loss does not increase significantly in a neighborhood around the found minimum. Therefore,
flatness leads to good generalization because the loss on test examples does not increase
significantly (i.e., small generalization gap). [LXTG18] showed that visually flatter minima cor-
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respond to better generalization. [NBMS17] and [KMN+17] formalize this idea by measuring
the change in loss within a local neighborhood around the minimum considering random
[NBMS17] or “adversarial” weight perturbations [KMN+17]. These measures are shown to
be effective in predicting generalization in a recent large-scale empirical study [JNM+20] and
explicitly encouraging flatness during training has been shown to be successful in practice
[CCS+17, IPG+18, CS19, LSPJ20, ZZM21].

Recently, [WXW20b] applied the idea of flat minima to AT: through adversarial weight
perturbations, AT is regularized to find flatter minima of the robust loss landscape. This
reduces the impact of robust overfitting and improves robust generalization, but does not
avoid robust overfitting. As a result, early stopping is still necessary. Furthermore, flatness is
only assessed visually and it remains unclear whether flatness does actually improve in these
adversarial weight directions. Similarly, [GQU+20] shows that weight averaging [IPG+18]
can improve robust generalization, indicating that flatness might be beneficial in general.
This raises the question whether other “tricks” [GQU+20, PYD+21], e.g., different activation
functions [SSJF21] or label smoothing [SVI+16], or approaches such as AT with self-supervision
[HMKS19]/unlabeled examples [CRS+19] are successful because of finding flatter minima.

Contributions: This chapter studies whether flatness of the robust loss (RLoss) in weight
space improves robust generalization. To this end, we propose both average- and worst-case
flatness measures for the robust case, thereby addressing challenges such as scale-invariance
[DPBB17], estimation of RLoss on top or jointly with weight perturbations, and the discrepancy
between RLoss and RErr. We show that robust generalization generally improves alongside
flatness and vice-versa: Figure 5.1 plots RLoss (lower is more robust, y-axis) against our
average-case flatness in RLoss (lower is flatter, x-axis), showing a clear relationship. In
contrast to [WXW20b], not providing empirical flatness measures, our results show that
this relationship is stronger for average-case flatness. This trend covers a wide range of AT
variants on CIFAR10, e.g., AT-AWP [WXW20b], TRADES [ZYJ+19], MART [WZY+20], AT
with self-supervision [HMKS19] or additional unlabeled examples [CRS+19, AUH+19], as
well as various regularization schemes, including AutoAugment [CZM+19], label smoothing
[SVI+16] and noise or weight clipping [SCHS21a]. Furthermore, we consider hyperparameters,
e.g., learning rate schedule, weight decay, batch size, or different activation functions [HG16,
EUD18, Mis20], and methods explicitly improving flatness, e.g., Entropy-SGD [CCS+17] or
weight averaging [IPG+18].

5.2 Robust Generalization and Flat Minima

We study robust generalization and overfitting in the context of flatness of the robust loss
landscape in weight space, i.e., w.r.t. changes in the weights. While flat minima have consistently
been linked to standard generalization [HS97, NBMS17, KMN+17, LXTG18], this relationship
remains unclear for adversarial robustness. We start by briefly introducing the robust overfitting
phenomenon (Section 5.2.1) and discussing problems in judging flatness visually [LXTG18]
(Section 5.2.2). Then, we are inspired by [KMN+17, NBMS17] and introduce average- and
worst-case flatness measures based on the change in robust loss along random or adversarial
weight directions in a local neighborhood (Section 5.2.3), c.f. Figure 5.3. We also discuss
the connection of flatness to the Hessian eigenspectrum [YGL+18] and the importance of
scale-invariance as in [DPBB17].
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Figure 5.2: Robust Overfitting: Robust cross-entropy loss (RLoss) and robust error (RErr) over
epochs (normalized by 150 epochs) for AT, using a ResNet-18 on CIFAR10 (c.f. Section 5.3), to
illustrate robust overfitting. Left: Training RLoss (light blue) reduces continuously throughout
training, while test RLoss (dark blue) eventually increases again. We also highlight that
robust overfitting is not limited to incorrectly classified examples (green), but also affects
correctly classified ones (rose). Right: Similar behavior, but less pronounced, can be observed
considering RErr. We also show RErr obtained through early stopping (red).

5.2.1 Adversarial Training and Robust Overfitting

Adversarial Training (AT): Let f be a (deep) neural network taking input x ∈ [0, 1]D and
weights w ∈ RW and predicting a label f (x; w). Given a true label y, an adversarial example
is a perturbation x̃ = x + δ such that f (x̃; w) ̸= y. The perturbation δ is intended to be nearly
invisible which is, in practice, enforced using a Lp constraint: ∥δ∥p ≤ ϵ. To obtain robustness
against these perturbations, adversarial training injects adversarial examples during training:

minw Ex,y

[
max∥δ∥p≤ϵ L( f (x + δ; w), y)

]
(5.1)

where L denotes the cross-entropy loss. The outer minimization problem can be solved using
regular stochastic gradient descent (SGD) on mini-batches. To compute adversarial examples,
the inner maximization problem is tackled using projected gradient descent (PGD) [MMS+18].
Here, we focus on p = ∞ as this constrains the maximum change per feature/pixel, e.g.,
ϵ = 8/255 on CIFAR10. For evaluation (at test time), we consider both robust loss (RLoss)
max∥δ∥∞≤ϵ L( f (x + δ; w), y), approximated using PGD, and robust test error (RErr), computed
using AutoAttack [CH20c]. Note that AutoAttack stops when adversarial examples are found
and does not maximize cross-entropy loss, rendering it unfit to estimate RLoss.

Robust Overfitting: Following [RWK20], Figure 5.2 illustrates the problem of robust overfitting,
plotting RLoss (left) and RErr (right) over epochs, which we normalize by the total number of
epochs for clarity. Shortly after the first learning rate drop (at epoch 60, i.e., 40% of training),
test RLoss and RErr start to increase significantly, while robustness on training examples
continues to improve. Robust overfitting was shown to be independent of the learning rate
schedule [RWK20] and, as we show (Section 5.3.1), occurs across various different activation
functions as well as many popular AT variants. In contrast to [RWK20], mostly focusing
on RErr, Figure 5.2 shows that RLoss overfits more severely, indicating a “disconnectedness”
between RLoss and RErr that we consider in detail later. For now, RLoss and RErr do clearly
not move “in parallel” and RLoss, reaching values around 4, is higher than for a random
classifier (which is possible considering adversarial examples). This is primarily due to an
extremely high RLoss on incorrectly classified test examples (which are “trivial” adversarial
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examples). We emphasize, however, that robust overfitting also occurs on correctly classified
test examples.

5.2.2 Intuition and Visualizing Flatness

For judging robust flatness, we consider how RLoss changes w.r.t. random or adversarial
perturbations in the weights w. Generally, we expect flatter minima to generalize better as
the loss does not change significantly within a small neighborhood around the minimum, i.e.,
the found weights. Then, even if the loss landscape on test examples does not coincide with
the loss landscape on training examples, loss remains small, ensuring good generalization.
The contrary case, i.e., that sharp minima generalize poorly is illustrated in Figure 5.3 (right).
Before considering to measure flatness, we discuss the easiest way to “judge” flatness: visual
inspection of the RLoss landscape along random or adversarial directions in weight space.

In [LXTG18], loss landscape is visualized along normalized random directions. Normaliza-
tion is important to handle different scales, i.e., weight distributions, and allow comparison
across models. We follow [WXW20b] and perform per-layer normalization: Letting ν ∈ RW be
a direction in weight space, it is normalized as

ν̂(l) =
ν(l)

∥ν(l)∥2
∥w(l)∥2 for layer l. (5.2)

This is in contrast to [LXTG18] where a filter-wise normalization is used. However, we
found this to make no difference in practice. Moreover, we also consider biases, treating
them as individual layer, but we exclude batch normalization parameters. Then, the loss
landscape is visualized in 51 discrete (evenly spaced) steps along this direction, i.e., w + sν̂ for
s ∈ [−1, 1]. Adversarial examples are computed “on-the-fly”, i.e., for each w + sν̂ individually,
to avoid underestimating RLoss as in [YLW+18, PYXW19]. The result is indeed scale-invariant:
Figure 5.4 (top) shows that the loss landscapes for scaled versions (factors 0.5 or 2) of our
AT baseline coincide with the original landscape. Here, we additionally scale the weights by
factors 0.5 and 0.025 for random/Hessian eigenvalue and adversarial directions, respectively.
This essentially “zooms in” and is particularly important when visualizing along adversarial
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Figure 5.4: Visualizing Flatness: RLoss landscape across 10 random/adversarial directions or
in the direction of the largest Hessian eigenvalue estimated on a batch of 128 test examples. Top:
Our AT baseline (ResNet-18) and scaled variants (×2 and ×0.5). Training with smaller batch
size or Adam [KB15b] improves adversarial robustness (lower RErr vs. AutoAttack [CH20c])
but does not result in visually flatter minima. Bottom: AT-AWP [WXW20b] or Entropy-
SGD [CCS+17] improve robustness and visual flatness in random directions. In adversarial
directions, however, AT-AWP looks very sharp. Overall, visual inspection does not provide a
clear, objective picture of flatness.

directions. However, Figure 5.4 also illustrates that judging flatness visually is difficult:
Considering random weight directions, AT with Adam [KB15b] or small batch size improves
adversarial robustness, but the found minima look less flat (top). For other approaches, e.g.,
TRADES [ZYJ+19] or AT-AWP [WXW20b], results look indeed flatter while also improving
robustness (bottom). In adversarial directions, in contrast, AT-AWP looks particularly sharp.
Furthermore, not only flatness but also the vertical “height” of the loss landscape matters, and
it is impossible to tell “how much” flatness is necessary.

5.2.3 Average- and Worst-Case Flatness Measures

In order to objectively measure and compare flatness, we draw inspiration from [NBMS17,
KMN+17] and propose average- and worst-case flatness measures adapted to the robust loss.
We emphasize that measuring flatness in RLoss is non-trivial and flatness in (clean) Loss cannot
be expected to correlate with robustness. For example, we need to ensure scale-invariance
[DPBB17] and estimate RLoss on top of random or adversarial weight perturbations:

Average-Case / Random Flatness: Considering random weight perturbations ν ∈ Bξ(w)
within the ξ-neighborhood of w, average-case flatness is computed as

Eν[ max
∥δ∥∞≤ϵ

L( f (x+δ; w+ν), y)]− max
∥δ∥∞≤ϵ

L( f (x+δ; w), y) (5.3)

averaged over test examples x, y, as illustrated in Figure 5.3. We define Bξ(w) using relative
L2-balls per layer (c.f. Equation (5.2)):

Bξ(w) = {w + ν : ∥ν(l)∥2 ≤ ξ∥w(l)∥2∀ layers l}. (5.4)

This ensures scale-invariance w.r.t. the weights as Bξ(w) scales with the weights on a per-layer
basis. Note that the second term in Equation (5.3), i.e., the “reference” robust loss, is important
to make the measure independent of the absolute loss (i.e., corresponding to the vertical shift
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in Figure 5.4, left). Sampling in Bξ(w) is accomplished by sampling individually per layer.
That is, for each layer l, we compute ξ ′ := ξ · ∥w(l)∥2 given the original weights w. Then, a
random vector ν(l) with ∥ν(l)∥2 ≤ ξ ′ is sampled. This is done for each layer, handling weights
and biases as separate layers, but ignoring batch normalization [IS15b] parameters. In practice,
ξ can be as large as 0.5. We refer to Equation (5.3) as average-case flatness in RLoss.

Worst-Case / Adversarial Flatness: [WXW20b] explicitly optimizes flatness in adversarial
weight directions and shows that average-case flatness is not sufficient to improve adversarial
robustness. As it is unclear whether [WXW20b] actually improves worst-case flatness, we
define

max
ν∈Bξ (w)

[
max
∥δ∥∞≤ϵ

L( f (x+δ; w+ν), y)
]
− max

∥δ∥∞≤ϵ
L( f (x+δ; w), y) (5.5)

as worst-case flatness in RLoss. Here, the expectation over ν in Equation (5.3) is replaced
by a maximum over ν ∈ Bξ(w), considering smaller ξ. We use the same definition of Bξ(w)
as above (aligned with [WXW20b]). Regarding standard performance, this worst-case notion
of flatness has been shown to be a reliable predictor of generalization [JNM+20, KMN+17].
For computing Equation (5.5) in practice, we jointly optimize over ν and δ (for each batch
individually) using PGD. This means, after random initialization of δb, ∀b = 1, . . . , B, and
ν ∈ Bξ(w), each iteration computes and applies updates

∆ν = ∇ν

B

∑
b=1

L( f (xb + δb; w + ν), yb) ∆δb = ∇δb

B

∑
b=1

L( f (xb + δb; w + ν), yb) (5.6)

before projecting δb and ν onto the constraints ∥δb∥∞ ≤ ϵ and ∥ν(l)∥2 ≤ ξ∥w(l)|2. The latter
projection is applied in a per-layer basis. As illustrated in Figure 5.4, RLoss increases quickly
along adversarial directions, even for very small values of ξ, e.g., ξ = 0.005.

Flatness of Clean Loss Landscape: We can also consider both Equation (5.3) and Equation (5.5)
on the clean (cross-entropy) loss (“Loss”), i.e.,

L( f (x, w+ν), y) instead of max∥δ∥∞≤ϵ L( f (x+δ, w+ν), y). (5.7)

We note that RLoss is an upper bound of (clean) Loss. Thus, flatness in RLoss and Loss are
connected. However, we found that measuring flatness in RLoss is essential in order to judge
robust generalization, as detailed later in Section 5.3.

5.2.4 Discussion

In the context of flatness, there has also been some discussion concerning the meaning of
Hessian eigenvalues [LXTG18, YGL+18] as well as concerns regarding the scale-invariance of
flatness measures [DPBB17]. First, regarding the Hessian eigenspectrum, [YGL+18] shows that
large Hessian eigenvalues indicate poor adversarial robustness. However, Hessian eigenvalues
are generally not scale-invariant (which is acknowledged in [YGL+18]): Our AT baseline has a
maximum eigenvalue of 1990 which reduces to 505 when up-scaling the model and increases
to 7936 when down-scaling, without affecting robustness (c.f. ×0.5 and ×2 in Figure 5.4). We
also found that the largest eigenvalue is not correlated with adversarial robustness. Similarly,
we did not find a strong correlation between the fraction |λmin|/|λmax| of smallest and largest
eigenvalue and adversarial robustness, as proposed in [LXTG18]. The results are summarized
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Model RErr ↓ λmax
|λmin|
|λmax|

AT (baseline) 62.8 1990 0.088
Scaled ×0.5 62.8 7936 0.088
Scaled ×2 62.8 505 0.088
Batch size 8 58.2 3132 0.027
Adam 57.5 540 0.047
Label smoothing 61.2 2484 0.085
Self-supervision 57.1 389 0.041
Entropy-SGD 58.6 5773 0.054
TRADES 56.7 947 0.089
MART 61 1285 0.087
AT-AWP 54.3 1200 0.241

Table 5.1: Hessian Eigenvalues and Con-
vexity: We report RErr against AutoAttack
[CH20c], the maximum Hessian eigenvalue
λmax and the convexity measure of [LXTG18]
computed as |λmin|/|λmax|. This fraction is sup-
posed to quantify the degree of non-convexity
around the found minimum. As can be seen,
neither λmax nor convexity correlate well with
adversarial robustness. Regarding λmax this
is due to the Hessian eigenspectrum not be-
ing scale-invariant, as shown for scaled ver-
sions (×0.5 and ×2) of our AT baseline.

in Table 5.1. Also due to these shortcomings, we decided not to attempt and compute the
Hessian based on adversarial examples for further experiments.

Second, following a similar train of thought, [DPBB17] criticizes the flatness measures of
[NBMS17, KMN+17] as not being scale-invariant. That is, through clever scaling of weights,
without changing predictions, arbitrary flatness values can be “produced”. However, the
analysis in [DPBB17] does not take into account the relative neighborhood as defined in
[KMN+17], which renders the measure explicitly scale-invariant. This also applies to our
definition of Bξ(w) in Equation (5.4) and is shown in Figure 5.4 where normalization is
performed relative (per-layer) to the weights. In detail, scaling the used ResNet-18 was
accomplished by scaling only the convolutional layers followed by batch normalization – batch
normalization essentially “cancels” out the scaling after re-calibrating the statistics. As Bξ(w)
is defined per-layer, relative to w, the neighborhood increases alongside the weights. This also
applies to the example of [DPBB17], scaling up the first layer of a two-layer ReLU network
(without batch normalization) by α and scaling down the second layer by 1/α.

5.3 Experiments

We start with a closer look at RLoss in robust overfitting (Section 5.3.1, Figure 5.5). Then, we
show a strong correlation between good robust generalization and flatness (Section 5.3.2). For
example, robust overfitting causes sharper minima (Figure 5.6). More importantly, more robust
models generally find flatter minima and, vice-versa, methods encouraging flatness improve
adversarial robustness (Figure 5.7 and 5.9). In fact, flatness improves robust generalization by
lowering the robust generalization gap and avoiding robust overfitting (Figure 5.10).

Setup: On CIFAR10 [Kri09], our AT baseline uses ResNet-18 [HZRS16a] with batch normal-
ization [IS15b] and ReLU activations, trained for 150 epochs with batch size 128, learning rate
0.05, reduced by factor 0.1 at 60, 90 and 120 epochs, using weight decay 0.005 and momentum
0.9 with standard SGD. We whiten input examples by subtracting the (per-channel) mean
and dividing by standard deviation and subsequently apply random flips and cropping as
data augmentation. During training, we use 7 iterations PGD, with learning rate 0.007, signed
gradient and ϵ = 8/255 for L∞ adversarial examples. PGD-7 is also used for early stopping
(every 5th epoch) on the last 500 test examples. We do not use early stopping by default. For
evaluation on the first 1000 test examples, we run PGD with 20 iterations, 10 random restarts
to estimate RLoss and AutoAttack [CH20c] to estimate RErr (c.f. Section 5.2.1). Note that
AutoAttack does not maximize cross-entropy loss as it stops when adversarial examples are
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Figure 5.5: Understanding Robust Overfitting: Training curves over epochs, see Section 5.2.4
for discussion. First row, first column: RLoss for correct/incorrect test examples, for AT
and MART. First row, second column: We consider ignoring incorrectly classified training
examples in the RLoss computation during training (dark blue) and preventing label leaking
by computing adversarial examples against the predicted labels (rose). However, these “tricks”
do not reduce robust overfitting. In contrast, MART [WZY+20] (green) dampens overfitting
through an additional robust KL-loss weighted by confidence. First row, third column: Both
label smoothing and label noise reduce robust overfitting w.r.t. RLoss. However, this does
not translate to a similar reduction of RErr. Second row: RLoss for various AT variants and
different learning rate schedules. While AT-AWP can avoid robust overfitting altogether, others
methods like weight decay merely reduce its impact. Both depend on hyperparameters.

found. Thus, it is not suitable to estimate RLoss. We do not use momentum [DLP+18] or
backtracking [SHS20] for PGD.

For average-case flatness of RLoss, we take the average of 10 random weight perturbations
with ξ=0.5. For worst-case flatness, we maximize RLoss jointly over adversarial examples and
adversarial weights with ξ=0.00075, taking the worst of 10 restarts. We use a learning rate
0.001, after normalizing the update ∆ν in Equation (5.6) per-layer as in Equation (5.2). In both
cases, 20-step PGD as described above is used to compute adversarial examples (choosing the
worst-case one per test example) and we use a batch size of 128 on the first 1000 test examples.

Methods: Besides our AT baseline, we consider AT-AWP [WZX+16b], TRADES [ZYJ+19],
MART [WZY+20], AT with self-supervision [HMKS19] or additional unlabeled examples
[CRS+19, AUH+19], weight averaging [IPG+18] and AT with “early-stopped” PGD [ZXH+20].
We investigate different hyperparameters and “tricks” recently studied in [GQU+20, PYD+21]:
learning rate schedules, batch size, weight decay, label smoothing [SVI+16] as well as SiLU,
Mish, and GeLU [HG16, EUD18, Mis20] activation functions. Furthermore, we consider
Entropy-SGD [CCS+17], label noise, weight clipping [SCHS21a] and AutoAugment [CZM+19].
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Figure 5.6: Flatness Throughout Training. Left: We plot train and test RLoss, maximum
Hessian eigenvalue λmax, average-/worst-case flatness of RLoss. Flatness and λmax increase
quickly during robust overfitting. Right: Test RLoss (y-axis) plotted against flatness in RLoss
(x-axis) during training (early epochs in dark blue, late epochs in dark red), showing a clear
correlation, for both average- and worst-case flatness. AT with self-supervision reduces the
impact of robust overfitting (RLoss increases less) and simultaneously favors flatter minima.
This behavior is pronounced for AT-AWP and AT with additional unlabeled examples.

We emphasize that weight averaging, Entropy-SGD and weight clipping are known to improve
flatness of the (clean) loss. If not stated otherwise, these methods are applied on top or as replacement
of our AT baseline. We report results using the best hyperparameters per method. Finally, we
also use pre-trained models from RobustBench [CAS+20a], which were obtained using early
stopping. Appendix B.4 discusses each of the evaluated methods individually in more detail.

5.3.1 Understanding Robust Overfitting

In contrast to related work [RWK20], we take a closer look at RLoss during robust overfitting
because RErr is “blind” to many improvements in RLoss, especially on incorrectly classified
examples. Figure 5.5 shows training curves for various methods, i.e., RLoss/RErr over (normal-
ized) epochs. For example, explicitly handling incorrectly classified examples during training,
using MART, helps but does not prevent overfitting: RLoss for MART reduces compared to AT
(top row, middle). Unfortunately, this improvement does not translate to significantly better
RErr. This discrepancy between RLoss and RErr can be reproduced for other methods, as well:
label smoothing and label noise enforce, in expectation, the same target distribution. Thus, both
reduce RLoss during overfitting (top row, right, rose and dark green). Label smoothing, how-
ever, does not improve RErr as significantly as label noise, i.e., does not prevent misclassification.
This illustrates an important aspect: against adversarial examples, “merely” improving RLoss
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Figure 5.8: Relationship between RLoss and RErr: Left: RErr plotted against RLoss, showing
that improved RLoss does not directly translate to reduced RErr for large RLoss. In these
cases, reducing RLoss mainly means reducing the confidence of adversarial examples, which is
necessary to improve adversarial robustness. Right: For average-case flatness in RLoss, subject
to the non-trivial interplay between RErr and RLoss (c.f. left), we can also see a relationship
between flatness and RErr.

does not translate to improved RErr if RLoss is high to begin with, i.e., “above” − log(1/K)≈2.3
for K=10 classes. However, this is usually the case during robust overfitting. RErr, on the other
hand, does not take into account the confidence of wrong predictions, i.e., it is “blind” for
these improvements in RLoss. Label noise, in contrast, also improves RErr, which might be
due to the additional randomness.

Similar to established methods, many “simple” regularization schemes prove surprisingly
effective in tackling robust overfitting. For example, strong weight decay delays robust
overfitting and AutoAugment prevents overfitting entirely, c.f. Figure 5.5 (bottom row). This
indicates that popular AT variants, e.g., TRADES, AT with self-supervision or unlabeled
examples, improve adversarial robustness by avoiding robust overfitting through regularization.
This is achieved by preventing convergence on training examples (dotted). In regularization,
however, hyperparameters play a key role: even AT-AWP does not prevent robust overfitting if
regularization is “too weak” (blue). This is particularly prominent in terms of RLoss. Finally,
learning rate schedules play an important role in how and when robust overfitting occurs.
However, as in [RWK20], all schedules are subject to robust overfitting.

5.3.2 Robust Generalization and Flatness

As robust overfitting is primarily avoided through strong regularization, we hypothesize that
this is because strong regularization finds flatter minima in the RLoss landscape. These flat
minima help to improve robust generalization.

Flatness in RLoss “Explains” Overfitting: Using our average- and worst-case flatness mea-
sures in RLoss, we find that flatness reduces significantly during robust overfitting. Namely,
flatness “explains” the increased RLoss caused by overfitting very well. Figure 5.6 (left) plots
RLoss, alongside average- and worst-case flatness and the maximum Hessian eigenvalue
throughout training of our AT baseline. Clearly, flatness increases alongside (test) RLoss as
soon as robust overfitting occurs. Note that the best epoch is 60, meaning 0.4 (black dotted). For
further illustration, Figure 5.6 (middle) explicitly plots RLoss (y-axis) against flatness in RLoss
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Figure 5.9: Robustness in RLoss and Flatness: Left: RLoss (y-axis) plotted against our average-
case flatness in RLoss. We highlight selected models, as in Table 5.2 and reveal a striking
correlation between adversarial robustness and flatness. Popular AT variants improving
robustness (e.g., TRADES, MART, etc.) also correspond to flatter minima. Vice versa, methods
improving flatness (e.g., Entropy-SGD, weight decay, etc.) improve robustness obtained through
AT. Subject to the non-trivial interplay between RErr and RLoss (c.f. left), this relationship is
also visible using RErr to quantify robustness. Right: RLoss (y-axis) plotted against worst-case
flatness (x-axis) shows a less clear relationship. Still, improved flatness remains a necessity for
better robust generalization.

(x-axis) across epochs (dark blue to dark red): RLoss and flatness clearly worsen “alongside”
each other during overfitting, for both average- and worst-case flatness. Methods such as AT
with self-supervision, AT-AWP or AT with unlabeled examples avoid both robust overfitting
and sharp minima (right). This relationship generalizes to different hyperparameter choices of
these methods: Figure 5.7 plots RLoss (y-axis) vs. average-case flatness (x-axis) across different
hyperparameters. Again, e.g., for TRADES or AT-AWP, hyperparameters with lower RLoss
also correspond to flatter minima. In fact, Figure 5.7 indicates that the connection between
robustness and flatness also generalizes across different methods (and individual models).

Improved Robustness Through Flatness: Indeed, across all trained models, we found a strong
correlation between robust generalization and flatness, using RLoss as measure for robust
generalization. We mainly consider RLoss to assess robust generalization as improvements in
RLoss above ∼2.3 have, on average, only small impact on RErr. Pushing RLoss below 2.3, in
contrast, directly translates to better RErr. This is illustrated in Figure 5.8 (left) which plots
RErr vs. RLoss for all evaluated models. To avoid this “kink” in the dotted red lines around
RLoss≈2.3, Figure 5.9 (left) plots RLoss (y-axis) against average-case flatness in RLoss (x-axis),
highlighting selected models. This reveals a clear correlation between robustness and flatness:
More robust methods, e.g., AT with unlabeled examples or AT-AWP, correspond to flatter
minima. Methods improving flatness, e.g., Entropy-SGD, weight decay or weight clipping,
improve adversarial robustness. This also translates to RErr subject to the described bend
at RLoss≈2.3, c.f. Figure 5.8 (right). While many robust methods still obtain better flatness,
activation functions such as SiLU, MiSH or GeLU also seem to improve flatness, without clear
advantage in terms of robustness. Overall, with Pearson/Spearman correlation coefficients of
0.85/0.87 (p-values <10−21), we revealed a strong relationship between robustness and flatness.
We emphasize that, with a Pearson correlation between RLoss and average-case flatness in
clean Loss of only 0.27, it is essential to measure flatness in RLoss.
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Model Robustness ↓ Flatness ↓ Early Stop.
(sorted asc. by test RErr) RErr RErr Avg Worst RErr ↓
(split at 70%/30% percentiles) (test) (train) (RLoss) (RLoss) (early stop)

+Unlabeled 48.9 43.2 (-5.7) 0.32 1.20 48.9 (-0.0)
Cyclic 53.6 35.4 (-18.2) 0.35 1.50 53.6 (-0.0)
AutoAugment 54.0 47.9 (-6.1) 0.49 0.69 53.5 (-0.5)
AT-AWP 54.3 43.1 (-11.2) 0.35 2.68 53.6 (-0.7)
Label noise 56.2 30.0 (-26.2) 0.33 0.93 55.5 (-0.7)
Weight clipping 56.5 39.0 (-17.5) 0.41 4.57 56.5 (-0.0)
TRADES 56.7 15.8 (-40.9) 0.57 2.25 53.4 (-3.3)
Self-supervision 57.1 45.0 (-12.1) 0.33 2.63 56.8 (-0.3)
Weight decay 58.1 32.8 (-25.3) 0.50 3.93 54.8 (-3.3)
Entropy-SGD 58.6 46.1 (-12.5) 0.28 1.80 56.9 (-1.7)
MiSH 59.8 5.3 (-54.5) 1.56 3.54 53.7 (-6.1)
“Late” multistep 59.8 18.4 (-41.4) 0.80 2.96 57.8 (-2.0)
SiLU 60.0 5.6 (-54.4) 1.71 4.20 53.7 (-6.3)
Weight averaging 60.0 10.0 (-50.0) 1.28 5.98 53.0 (-7.0)
Larger ϵ=9/255 60.9 11.1 (-49.8) 1.33 5.84 53.8 (-7.1)
MART 61.0 20.8 (-40.2) 0.73 3.17 54.7 (-6.3)
GeLU 61.1 3.2 (-57.9) 1.55 4.12 56.7 (-4.4)
Label smoothing 61.2 8.0 (-53.2) 0.65 2.72 54.0 (-7.2)
AT (baseline) 62.8 10.7 (-52.1) 1.21 6.48 54.6 (-8.2)
Robustness Averages (across models)
Good (RErr<57%≈30% percentile) 54.3 36.3 (-18.0) 0.40 2.00 53.6 (-0.7)
Average (57%≥RErr < 60%) 58.7 29.5 (-29.2) 0.69 2.9 56.0 (-2.7)
Poor (RErr≥60%≈70% percentile) 61.0 9.9 (-51.1) 1.21 4.67 54.4 (-6.6)

Table 5.2: Robustness and Flatness, Quantitative Results: Test and train RErr (first, second
column, early stopping in fifth column) as well as average-/worst-case flatness in RLoss (third,
fourth column) for selected methods, c.f. Figure 5.9. We split methods into good , average ,
and poor robustness using the 30% and 70% percentiles. Most methods improve adversarial
robustness alongside both average- and worst-case flatness.

Figure 5.9 (right) shows that this relationship is less clear when considering worst-case
flatness in RLoss (Pearson coefficient 0.54). This is in contrast to [WXW20b] suggesting that
worst-case flatness, in particular, is important to improve robustness of AT. However, worst-case
flatness is more sensitive to ξ and thus less comparable across methods. Note that worst-case
robustness is still a good indicator for overfitting, c.f. Figure 5.6. All results are summarized in
tabular form in Table 5.2: Grouping methods by good , average or poor robustness, we find
that methods need at least “some” flatness, average- or worst-case, to be successful.

Decomposing Robust Generalization: So far, we used (absolute) RLoss on test examples as
proxy of robust generalization. This is based on the assumption that deep models are generally
able to obtain nearly zero train RLoss. However, this is not the case for many methods in
Table 5.2 (second column). Thus, we also consider the robust generalization gap and the RLoss
difference between last and best (early stopped) epoch. Specifically, Figure 5.10 (left) explicitly
plots the RLoss generalization gap (test−train RLoss, y-axis) against average-case flatness in
RLoss (x-axis). Robust methods generally reduce this gap by both reducing test RLoss and
avoiding convergence in train RLoss. Furthermore, Figure 5.10 (right) considers the difference
between last and best epoch, essentially quantifying the extent of robust overfitting. Again,
methods with small difference, i.e., little robust overfitting, generally correspond to flatter
minima. This is also confirmed in Figure 5.11 showing that early stopping essentially finds
flatter minima along the training trajectory, thereby improving adversarial robustness. Finally,
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Figure 5.10: Flatness and Robust Generalization. Robust generalization (RLoss) decomposed
into the test-train difference and the last-best (epoch) improvement (y-axis), both plotted against
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i.e., flatness clearly reduces both the robust generalization gap and robust overfitting.
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Figure 5.12 highlights that our conclusions also generalize to computing robust flatness on
training examples. Altogether, flatness improves robust generalization by reducing both the
robust generalization gap and robust overfitting.

More Results: Figure 5.1 and 5.10 show that the pre-trained models from RobustBench
[CAS+20a] confirm our observations so far. While detailed analysis is not possible as only
early stopped models are provided, they are consistently more robust and correspond to flatter
minima compared to our models. This is despite using different architectures (commonly Wide
ResNets [ZK16]).
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5.4 Conclusion

In this paper, we studied the relationship between adversarial robustness, specifically con-
sidering robust overfitting [RWK20], and flatness of the robust loss (RLoss) landscape w.r.t.
perturbations in the weight space. We introduced both average- and worst-case measures for
flatness in RLoss that are scale-invariant and allow comparison across models. Considering
adversarial training (AT) and several popular variants, including TRADES [ZYJ+19], AT-AWP
[WXW20b] or AT with additional unlabeled examples [CRS+19], we show a clear relationship
between adversarial robustness and flatness in RLoss. More robust methods predominantly
find flatter minima. Vice versa, approaches known to improve flatness, e.g., Entropy-SGD
[CCS+17] or weight clipping [SCHS21a] can help AT become more robust, as well. Moreover,
even simple regularization methods such as AutoAugment [CZM+19], weight decay or label
noise, are effective in increasing robustness by improving flatness. These observations also
generalize to pre-trained models from RobustBench [CAS+20a].





III
I m p r ov i n g We i g h t R o b u s t n e s s

While the previous part focused on understanding robustness against
adversarial examples, i.e., perturbations in the input space, this part
considers robustness in weight space instead. There are numerous ap-
plications where robustness against weight perturbations is relevant,
including, e.g., network quantization or security against backdoor or
trojan attacks. Moreover, robustness in weight space is closely related
to the flatness measures from Chapter 5. In the following, however,
we particularly focus on the importance of weight robustness for
deploying deep neural networks on deep learning accelerators, spe-
cialized chips for inference.
In particular, Chapter 6 considers the robustness of models against
random or adversarial bit errors in their quantized weights. As we
will show, robustness against random bit errors is highly relevant
in the context of reducing energy consumption of accelerators. This
is because robustness allows enduring bit errors induced through
lower operating voltage, directly improving energy efficiency without
reducing performance significantly. Additionally, defending adver-
sarial bit errors also improves security against malicious hardware-
of software-based attacks on the accelerator’s memory.
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This chapter addresses robustness of deep neural networks against perturbations in
their weights, specifically considering bit errors in quantized weights. In the context
of specialized hardware for inference, so-called accelerators, we show that bit error

robustness contributes to more energy-efficient and secure deployment.
These deep neural network accelerators received considerable attention in recent years due

to the potential to save energy compared to mainstream hardware. Low-voltage operation of
accelerators allows further reducing energy consumption significantly, however, causes bit-level
failures in the memory storing the quantized weights. Furthermore, accelerators have been
shown to be vulnerable to adversarial attacks on voltage controllers or individual bits. We show
that a combination of robust fixed-point quantization, weight clipping, as well as random
bit error training (RandBET) or adversarial bit error training (AdvBET) improves robustness
against random or adversarial bit errors in quantized DNN weights significantly. This leads not
only to high energy savings from low-voltage operation as well as low-precision quantization,
but also improves security of accelerators. Our approach generalizes across operating voltages
and accelerators, as demonstrated on bit errors from profiled SRAM arrays, and achieves
robustness against both targeted and untargeted bit-level attacks. Without losing more than
0.8%/2% in test accuracy, we can reduce energy consumption on CIFAR10 by 20%/30% for
8/4-bit quantization using RandBET. Allowing up to 320 adversarial bit errors, AdvBET
reduces test error from above 90% (chance level) to 26.22% on CIFAR10.

This chapter is based on [SCHS21a] and its extension [SCHS21b], which is currently
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under review. As first author, David Stutz ran all experiments and was the main writer of both
papers. Proposition 1 in Section 6.4.2 and its proof were contributed by Matthias Hein and the
profiled bit errors of Figure 6.3 and Table 6.6 were provided by Nandhini Chandramoorthy.
This work was conducted in collaboration with IBM Research and presented at the Workshop
on the Future of Computing Architectures (FOCA) 2020 organized by IBM Research in 2020, the
Workshop on Robust Artificial Intelligence (RobustAI) organized by the Lorentz Center, at the
Workshop on Adversarial Learning Methods for Machine Learning and Data Mining (AdvML)
organized together with KDD 2021, as part of the Qualcomm Innovation Fellowship Europe
2019, as well as the Workshop on Adversarial Machine Learning in Real-World Computer
Vision Systems and Online Challenges (AML-CV) at CVPR 2021 where it was recognized as
distinguished paper. Finally, an invited talk was given at TU Dortmund.

The code for this chapter can be found on GitHub1.

6.1 Introduction

Energy-efficiency is an important goal to lower carbon-dioxide emissions of deep neural net-
work driven applications and is a critical prerequisite to enable applications in edge computing.
Deep neural network accelerators, i.e., specialized hardware for inference, are used to reduce
and limit energy consumption alongside cost and space compared to mainstream hardware, e.g.,
GPUs. These accelerators, e.g., [CDS+14, DFC+15, CES16, RWA+16, SPS+18, CSC+19, nvd],
generally feature large on-chip SRAM used as scratchpads, e.g., to store weights and inter-
mediate computations. The overall dynamic energy of the accelerator SRAM is proportional
to the number of SRAM accesses (e.g., to read weights) times the energy of a single ac-
cess. Thus, data access/movement constitutes a dominant component of accelerator’s energy
consumption [SCYE17]. While both optimized data flow, e.g., re-using weights, and low-
precision quantization [LTA16] reduce the number of memory accesses, recent accelerators
[RWA+16, KHM+18a, CSC+19] further try to lower the energy per SRAM access. This is
achieved by lowering the memory supply voltage (dynamic power per access varies quadrati-
cally with voltage). However, aggressive SRAM supply voltage scaling causes bit-level failures
on account of process variation [GCP+09, GKKR17] with direct impact on the stored model
weights. The rate p of these errors increases exponentially with lowered voltage, causing devas-
tating drops in accuracy. Thus, such accelerators are also vulnerable to maliciously reducing
voltage [TSS17] or adversarially inducing individual bit errors [KDK+14, MOG+20]. In the
following, we aim to enable very low-voltage operation of accelerators by developing deep
neural networks robust to random bit errors in their (quantized) weights. This also improves
security against manipulation of voltage settings [TSS17]. Furthermore, we address robustness
against a limited number of adversarial bit errors, similar to [RHF19a, RHL+20, HRL+20]. In
general, robustness to bit errors is a desirable goal to maintain safe operation and should
become a standard performance metric in low-power and quantized neural network design.

Figure 6.1 shows the average bit error rates of SRAM arrays as supply voltage is scaled
below Vmin, i.e., the measured lowest voltage at which there are no bit errors. Voltage (x-axis)
and energy (red, right y-axis) are normalized w.r.t. Vmin and the energy per access at Vmin,
respectively. Deep neural networks robust to a bit error rate (blue, left y-axis) of, e.g., p = 1%
allow reducing SRAM energy by roughly 30%. To improve robustness to the induced random
bit errors, we first consider the impact of fixed-point quantization on robustness. While prior
work [SSH15, MAA+16, MDI19] studies robustness to quantization, the impact of random

1https://github.com/davidstutz/mlsys2021-bit-error-robustness

https://github.com/davidstutz/mlsys2021-bit-error-robustness
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Figure 6.1: Energy and Low-Voltage Operation: Average bit error rate p (blue, left y-axis) from
32 14nm SRAM arrays of size 512×64 from [CSC+19] fabricated using 14nm FinFET technology
and energy (red, right y-axis) vs. voltage (x-axis). Voltage is normalized by Vmin, the minimal
measured voltage for error-free operation, and the energy per SRAM access at Vmin. Bit error
rate at a given supply voltage is measured as the count of read or write bit cell failures averaged
over the total number of bit cells in the SRAM. A bit cell failure refers to reading 1 on writing 0
or reading 0 on writing 1, c.f. [GKKR17]. Energy per write and read access of a 4KB (512 ×
64 bit) SRAM is obtained from Cadence Spectre simulations (constant clock frequency at all
supply voltages). SRAM accesses have significant impact on the accelerator’s energy [CES16].
Reducing voltage leads to exponentially increasing bit error rates.

bit errors in quantized weights has not been considered so far. We find that the choice of
quantization scheme has tremendous impact on robustness, even though accuracy is not
affected. In particular, we identify a particularly robust quantization scheme, RQuant in
Figure 6.2 (red). Additionally, independent of the quantization scheme, we propose aggressive
weight clipping during training. This acts as an explicit regularizer leading to spread out
weight distributions, improving robustness significantly, Clipping in Figure 6.2 (blue). This
is in contrast to, e.g., [ZST+18, SSH15] ignoring weight outliers to reduce quantization range,
with sole focus on improving accuracy.

Conventional error mitigation strategies or circuit techniques are not applicable to mitigate
larger rates of bit errors or incur a significant energy/space overhead. For example, common
error correcting codes (ECCs such as SECDED), cannot correct multiple bit errors per word
(containing multiple weights). However, for p = 1%, the probability of two or more random
bit errors in a 64-bit word is 13.5%. Furthermore, an adversary may intentionally target
multiple bits per word. Considering low-voltage induced random bit errors, error detection
via redundancy [RWA+16] or supply voltage boosting [CSC+19] allow error-free operation
at the cost of additional energy or space. Therefore, [KHM+18a] and [KOY+19] propose a
co-design approach of training deep neural networks on profiled bit errors (i.e., post-silicon
characterization) from SRAM or DRAM, respectively. These approaches work as long as the
spatial bit error patterns can be assumed fixed for a fixed accelerator and voltage. However,
the random nature of variation-induced bit errors requires profiling to be carried out for
each voltage, memory array and individual chip in order to obtain the corresponding bit
error patterns. This makes training on profiled bit error patterns an expensive process. We
demonstrate that the obtained models do not generalize across voltages or to unseen bit error
patterns, e.g., from other memory arrays, and propose random bit error training (RandBET),
in combination with weight clipping and robust quantization, to obtain robustness against
completely random bit error patterns, see Figure 6.2 (violet). Thereby, it generalizes across
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Figure 6.2: Robustness to Random and Adversarial Bit Errors: Left: Robust test error RErr
after injecting random bit errors (lower is better ↓, y-axis) plotted against bit error rate p (x-axis).
For 8 bit, robust quantization (RQuant, red), additionally weight clipping (Clipping, dotted
blue) or per-layer weight clipping (PLClipping, solid blue) and finally adding random bit error
training (RandBET, violet) improve robustness significantly. Robustness to higher bit error
rates allows more energy efficient operation, c.f. Figure 6.1. The Pareto optimal frontier is
shown for 8 bit (black solid) and 4 bit (dashed) quantization. Right: RErr against up to 320
adversarial bit errors, showing that Clipping combined with RandBET or AdvBET also allow
secure operation.

chips and voltages, without any profiling, hardware-specific data mapping or other circuit-level
mitigation strategies. Finally, we also consider bit errors in activations and inputs, as both are
temporally stored on the chip’s memory and thus subject to bit errors.

Besides low-voltage induced random bit errors, [KDK+14, MOG+20] demonstrate the
possibility of adversarially flipping specific bits. The bit flip attack (BFA) of [RHF19a], an
untargeted search-based attack on (quantized) weights, demonstrates that such attacks can
easily degrade model accuracy with few bit flips. [HRL+20] proposes a binarization strategy
to “defend” against BFA. However, the approach was shown to be ineffective shortly after
considering a targeted version of BFA [RHL+20], leaving the problem unaddressed. We propose
a novel attack based on projected gradient descent, inspired by recent work on adversarial
examples [MMS+18]. We demonstrate that our attack is both more effective and more efficient.
Moreover, in contrast to BFA, our adversarial bit attack enables adversarial bit error training
(AdvBET). As shown in Figure 6.2 (right), AdvBET (magenta) improves robustness against
adversarial bit errors considerably, outperforming Clipping (blue) and RandBET (violet) which,
surprisingly, provide very strong baselines. As a result, we are able to obtain robustness to
both random and adversarial bit errors for energy-efficient and secure accelerators.

Contributions: We combine our robust fixed-point quantization with weight clipping and
random bit error training (RandBET) or adversarial bit error training (AdvBET) in order to
obtain high robustness against low-voltage induced, random bit errors or maliciously crafted,
adversarial bit errors. We consider fixed-point quantization schemes in terms of robustness
and accuracy, instead of solely focusing on accuracy as related work. Furthermore, we show
that aggressive (per-layer) weight clipping, as regularization during training, is an effective
strategy to improve robustness through redundancy. In contrast to [KHM+18a, KOY+19], the
robustness obtained through RandBET generalizes across chips and voltages, as evaluated
on profiled SRAM bit error patterns from [CSC+19]. Moreover, we also consider bit errors
in activations and inputs. In contrast to [RHF19a, RHL+20], our (untargeted or targeted)
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adversarial bit error attack is based on gradient descent, improving effectiveness and efficiency,
and our AdvBET improves robustness against targeted and untargeted attacks, outperforming
the recently broken binarization approach of [HRL+20]. Finally, we discuss the involved
trade-offs regarding robustness (against random or adversarial bit errors). Figure 6.2 (left)
highlights key results for RandBET on CIFAR10: with 8/4 bit quantization and an increase
in test error of less than 0.8%/2%, roughly 20%/30% energy savings are possible – on top
of energy savings from using low-precision quantization. Similarly, AdvBET, c.f. Figure 6.2
(right), obtains 26.22% (robust) test error against up to 320 adversarial bit errors in the weights.

6.2 Bit Errors in Quantized Weights

In the following, we introduce the bit error models considered in this paper: random bit errors
(Section 6.2.1), induced through low-voltage operation of accelerator memory, and adversarial
bit errors (Section 6.2.2), maliciously crafted and injected by an adversary to degrade accuracy.

Notation: Let f (x; w) be a deep neural network taking an example x ∈ [0, 1]D, e.g., an image,
and weights w ∈ RW as input. The model is trained by minimizing the cross-entropy loss L on
a training set {(xn, yn)}N

n=1 consisting of examples xn and corresponding labels yn ∈ {1, . . . , K},
K denoting the number of classes. We assume a weight wi ∈ [qmin, qmax], i.e., within the
quantization range, to be quantized using a function Q. As we will detail in Section 6.3.1, Q
maps floating-point values to m-bit (signed or unsigned) integers. With vi = Q(wi), we denote
the integer corresponding to the quantized value of wi, i.e., vi is the bit representation of wi
after quantization represented as integer. Finally, dH(v, v′) denotes the bit-level Hamming
distance between the integers v and v′.

6.2.1 Low-Voltage Induced Random Bit Errors

We assume the quantized weights to be stored on multiple memory banks, e.g., SRAM in the
case of on-chip scratchpads or DRAM for off-chip memory. As shown in [GKKR17, KHM+18a,
CSC+19], the probability of memory bit cell failures increases exponentially as operating voltage
is scaled below Vmin, i.e., the minimal voltage required for reliable operation, see Figure 6.1.
This is done intentionally to reduce energy consumption [KHM+18a, CSC+19, KOY+19] or
adversarially by an attacker [TSS17]. Process variation during fabrication causes a variation in
the vulnerability of individual bit cells. As shown in Figure 6.3 (left), for a specific memory array,
bit cell failures are typically approximately random and independent of each other [GKKR17]
even so chips showing patterns with stronger dependencies are possible, c.f. Figure 6.3 (right).
Nevertheless, there is generally an “inherited” distribution of bit cell failures across voltages:
as described in [GKB+19], if a bit error occurred at a given voltage, it is likely to occur at lower
voltages, as made explicit in Figure 6.3. However, across different SRAM arrays in a chip or
different chips, the patterns or spatial distributions of bit errors is usually different and can be
assumed random [CSC+19]. Throughout the paper, we use the following bit error model:

Random Bit Error Model: The probability of a bit error is p (in %) for all weight values and bits.
For a fixed memory array, bit errors are persistent across supply voltages, i.e., bit errors at probability
p′≤p also occur at probability p. A bit error flips the currently stored bit. Random bit error injection is
denoted BErrp.

This error model realistically captures the nature of low-voltage induced bit errors, from
both SRAM and DRAM as confirmed in [KHM+18a, CSC+19, KOY+19]. In fact, our model
can be seen as a very conservative model. This is because low-voltage induced bit errors are
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Figure 6.3: Exemplary SRAM Bit Error Patterns: Measured bit errors from two chips with
on-chip SRAM (left and right), showing bit flip probability for a segment of size 64 × 128
bits: yellow indicates a bit flip probability of one, violet indicates zero probability. We show
measurements corresponding to two supply voltages. With lower voltage, bit error rate
increases. Also, the bit errors for higher voltage (= lower bit error rate) are a subset of those for
lower voltage (= higher rate), c.f. Section 6.2. Our error model randomly distributes bit errors
across space. However, as example, we also show SRAM chip 2 which has a different spatial
distribution with bit errors distributed along columns. We aim to obtain robustness across
different memory arrays, voltages and allowing arbitrary weight to memory mappings.

usually modeled as a two-step process: variations in the fabrication process cause bit cells to
be more or less vulnerable. Such vulnerable bit cells are (spatially) distributed approximately
uniformly (probability pflt), as described above [GKKR17]. Then, faulty bit cells may cause bit
errors when reading. However, these errors are usually transient, e.g., each read has a specific
probability perr of causing a bit error. In contrast, we assume the latter not to be transient errors,
i.e., perr = 100%. Thereby we follow measurements in [KHM+18a, GKB+19] indicating that
perr is often close to 100%. This means that we assume faulty bit cells to always provoke bit
errors. Note that our bit error model, with p = pflt · perr = pflt (because of perr=100%) remains
valid even if relaxing this assumption.

Moreover, our approach in Section 6.3 is model-agnostic: the error model can be refined
if extensive memory characterization results are available for individual chips. For example,
faulty bit cells with 1-to-0 or 0-to-1 flips might not be equally likely. Similarly, as in [KOY+19],
bit errors might be biased towards alignment along rows or columns of the memory array. The
latter case is illustrated in Figure 6.3 (right). However, estimating these specifics requires testing
infrastructure and detailed characterization of individual chips. More importantly, it introduces
the risk of overfitting to few specific memories/chips. Furthermore, we demonstrate that the
robustness obtained using our uniform error model generalizes to bit error distributions with
strong spatial biases as in Figure 6.3 (right).

We assume the quantized weights to be mapped linearly to the memory. This is the most
direct approach and, in contrast to [KOY+19], does not require knowledge of the exact spatial
distribution of bit errors. This also means that we do not map particularly vulnerable weights
to more reliable memory cells, and therefore no changes to the hardware or the application are
required. Thus, in practice, for W weights and m bits per weight value, we sample uniformly
u ∼ U(0, 1)W×m. Then, the j-th bit in the quantized weight vi = Q(wi) is flipped iff uij ≤ p.
Our model assumes that the flipped bits at lower probability p′ ≤ p are a subset of the flipped
bits at probability p and that bit flips to 1 and 0 are equally likely. The noise pattern of random
bit errors is illustrated in Figure 6.4: for example, a bit flip in the most-significant bit (MSB) of
the signed integer vi results in a change of half of the quantized range (also c.f. Section 6.3.1).

In the case of on-chip SRAM, inputs and activations will also be subject to low-voltage
induced bit errors. This is because the SRAM memory banks are used as scratchpads to
temporally store intermediate computations such as inputs and activations. As described in
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detail in Section 6.4.7, inputs are subject to random bit errors once before being fed into the deep
neural network. Activations, i.e., the result of intermediate layers, are subject to random bit
errors multiple times throughout a forward pass. This is modeled by (independently) injecting
random bit errors in the activations after each “block” consisting of convolution, normalization
and ReLU layers. This assumes that activations are temporally stored on the SRAM scratchpads
after each such block. In practice, the data flow of a accelerator is manually tailored to the neural
network architecture and chip design, which is also why energy estimation for accelerators is
very difficult [YCES17, WES19]. Furthermore, normalization schemes (group [WH18] or batch
normalization [IS15b]) and ReLU activations can be “folded into” the preceding convolutional
layer [JKC+18, LWL+19]. Thus, considering the activations to go through temporal storage on
the SRAM after each block is a realistic approximation of the actual data flow.

6.2.2 Adversarial Bit Errors

Following recent attacks on memory [KDK+14, BHJ+18, RHF19a, MOG+20] and complement-
ing our work on random bit errors, we also consider adversarial bit errors. We constrain the
number of induced bit errors by ϵ, similar to the Lp-constrained adversarial inputs [SZS+14].
Furthermore, we consider only one bit flip per weight value to simplify the projection onto the
discrete constraint set. Then, given knowledge of memory layout and addressing schemes, an
adversary can use, e.g., RowHammer [KDK+14], in order to flip as many of the adversarially
selected bits as possible. Note that, in practice, not all of these bits will be vulnerable to an
end-to-end RowHammer attack on memory, which we do not focus on. However, from a
robustness viewpoint, it makes sense to consider a slightly stronger threat model than actually
realistic. Overall, our white-box threat model is defined as follows:

Adversarial Bit Error Model: An adversary can flip up to ϵ bits, at most one bit per (quantized)
weight, to reduce accuracy and has full access to the deep neural network, its weights and gradients.

Note that we do not consider adversarial bit errors in inputs (i.e., adversarial examples) or
activations. Following the projected gradient ascent approach of [MMS+18] and letting dH be
the (bit-level) Hamming distance, we intend to maximize cross-entropy loss L on a mini-batch
{(xb, yb)}B

b=1 of examples as untargeted attack:

maxṽ

B

∑
b=1

L( f (xb; Q−1(ṽ)), yb) s.t. dH(ṽ, v) ≤ ϵ, dH(ṽi, vi) ≤ 1 (6.1)

Note that yb are the ground truth labels. We also consider a targeted version similar to
[RHL+20], where we minimize the cross-entropy loss between predictions and an arbitrary but
fixed target label: minṽ ∑B

b=1 L( f (xb; Q−1(ṽ)), yt) where yt is the same target label across all
examples xb. As made explicit in Equation (6.1), we work on bit-level, i.e., optimize over the
two’s complement signed integer representation ṽi ∈ {−2m−1 − 1, . . . , 2m−1 − 1} corresponding
to the underlying bits of the perturbed weights w̃ = Q(ṽ). We will adversarially inject bit errors
based on the gradient of Equation (6.1) and perform a projection onto the Hamming constraints
dH(ṽ, v) ≤ ϵ and dH(ṽi, vi) ≤ 1 with respect to the quantized, clean weights v = Q(w). This
means that we maximize Equation (6.1) through projected gradient ascent where the forward
and backward pass are performed in floating point:

w̃(t+1) = w̃(t) + γ∆(t) with ∆(t) =
B

∑
b=1

∇wL( f (xb; w̃(t)
q ), yb) and w̃(t)

q = Q−1(Q(w̃(t))) (6.2)

followed by the projection of ṽ(t+1) = Q(w̃(t+1)) onto the (bit-level) Hamming constraints of
Equation (6.1). Here, γ is the step size. The updates are performed in floating point, while
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Algorithm 1 Adversarial Bit Errors: We maximize cross-entropy loss using projected gradient
ascent while ensuring that at most ϵ bits are flipped. Quantized weights in red; dequantized
weights in blue; and floating-point operations in magenta. For coherence with Algorithm 2,
AdvBitErrors takes the quantized weights v = Q(w) as input.

1: AdvBitErrors(v, ϵ)
2: # perturb quantized weights by flipping at most ϵ bits:
3: initialize ṽ(0) subject to dH(ṽ(0), v)≤ ϵ, dH(ṽ

(0)
i , vi)≤ 1

4: w̃(0)
q = Q−1(ṽ(0)) # dequantize perturbed weights

5: w̃(0) = w̃(0)
q # floating-point weights to acc. updates

6: for t = 0, . . . , T − 1 do
7: # fixed batch {(xb, yb)}B

b=1
8: # forward+ backward pass w/ dequantized weights:
9: ∆(t) = ∇w ∑B

b=1 L( f (xb; w̃(t)
q ), yb)

10: w̃(t+1) = w̃(t) + γ∆(t) # update w/o quantization:
11: ṽ(t+1) = Q(w̃(t+1)) # quantization for projection
12: project onto dH(ṽ(t+1), v)≤ ϵ, dH(ṽ

(t+1)
i , vi)≤ 1

13: w̃(t+1)
q = Q−1(ṽ(t+1)) # dequantization

14: end for
15: return w̃(T)

q # dequantized weights after projection

the forward pass is performed using the dequantized weights w̃(t)
q . The perturbed weights

w̃(0) = Q−1(ṽ(0)) are initialized by uniformly picking k ∈ [0, ϵ] bits to be flipped in v = Q(w)
in order to obtain ṽ(0). Our adversarial bit attack is summarized in pseudocode in Algorithm 1.

The Hamming-projection is similar to the L0 projection used for adversarial inputs, e.g.,
in [CH19]. Dropping the superscript t for brevity, in each iteration, we solve the following
projection problem:

minṽ′ ∥Q−1(ṽ)− Q−1(ṽ′)∥2
2 s.t. dH(vi, ṽ′i) ≤ 1, dH(v, ṽ′) ≤ ϵ (6.3)

where ṽ = Q(w̃) are the quantized, perturbed weights after Equation (6.2) and v = Q(w) are
the quantized, clean weights. We optimize over ṽ′ which will be the perturbed weights after
the projection, i.e., as close as possible to ṽ while fulfilling the constraints above. This can be
solved in two steps as the objective and the constraint set are separable: The first step involves
keeping only the top-ϵ changed values, i.e., the top-ϵ weights with the largest difference∣∣∣Q−1(Q(wi))− Q−1(ṽi)

∣∣∣ = |wq,i − w̃q,i| (6.4)

where w are the original, clean weights and wq the corresponding dequantized weights. All
other perturbed weights w̃q,i are reset to the original, clean weights wq,i. For the selected
weights, only the most significant changed bit is kept. In practice, considering ṽi and vi from
Equation (6.3) corresponding to one of the top-ϵ changes, if dH(ṽi, vi) > 1, only the highest
changed bit is kept. In practice, this can be implemented (and parallelized) easily on the m-bit
integers ṽi and vi while computing the (bit-level) Hamming distance dH.

Implementation Details: The optimization problem in Equation (6.1) is challenging due to
the non-convex constraint set that we project onto after each iteration. Therefore, we use
several random restarts, each initialized by randomly selecting k ∈ [0, ϵ] bits to be flipped in v
to obtain ṽ(0). We note that initialization by randomly flipping bits is important as, without
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initialization, i.e., w̃(0) := w, the loss L will be close to zero. We also found that initializing
with k = ϵ leads to difficulties in the first few iterations, which is why we sample k ∈ [0, ϵ]
uniformly. Additionally, we normalize the gradient ∆(t) in Equation (6.2):

∆̂(t,l) =
∆(t,l)

∥∆(t,l)∥∞
(6.5)

for each layer l individually (considering biases as separate layer), before applying the update,
i.e., w̃(t+1) = w̃(t) + γ∆̂(t). Instead of considering w̃(T), i.e., the perturbed weights after exactly
T iterations, we use

w̃(t∗) with t∗ = arg max
t

B

∑
b=1

L( f (xb; w̃(t)
q ), yb) (6.6)

instead. Finally, we also use momentum. Nevertheless, despite these optimization tricks, the
attack remains very sensitive to hyperparameters, especially regarding the step-size. Thus,
running multiple random restarts is crucial.

6.3 Robustness Against Bit Errors

We address robustness against random and/or adversarial bit errors in three steps: First, we
analyze the impact of fixed-point quantization schemes on bit error robustness. This has been
neglected both in prior work on low-voltage accelerators [KHM+18a, KOY+19] and in work
on quantization robustness [SSH15, MAA+16, MDI19]. This yields our robust quantization
(Section 6.3.1). On top, we propose aggressive weight clipping as regularization during training
(Section 6.3.2). Weight clipping enforces a more uniformly distributed, i.e., redundant, weight
distribution, improving robustness. We show that this is due to minimizing the cross-entropy
loss, enforcing large logit differences. Finally, in addition to robust quantization and weight
clipping, we perform random bit error training (RandBET) (Section 6.3.3) or adversarial bit
error training (AdvBET) (Section 6.3.4). For RandBET, in contrast to the fixed bit error patterns
in [KHM+18a, KOY+19], we train on completely random bit errors and thus generalize across
chips and voltages. Regarding AdvBET, we train on adversarial bit errors, computed as outlined
in Section 6.2.2. Generalization of bit error robustness is measured using robust test error (RErr),
the test error after injecting bit errors (lower is more robust).

6.3.1 Robust Fixed-Point Quantization

We consider quantization-aware training [JKC+18, Kri18] using a generic, deterministic fixed-
point quantization scheme commonly used in accelerators [CSC+19]. However, we focus on
the impact of quantization schemes on robustness against random bit errors, mostly neglected
so far [SSH15, MAA+16, MDI19]. We find that quantization affects robustness significantly,
even if accuracy is largely unaffected.

Fixed-Point Quantization: Quantization determines how weights are represented in memory,
e.g., on SRAM. In a fixed-point quantization scheme, m bits allow representing 2m distinct
values. A weight wi ∈ [−qmax, qmax] is represented by a signed m-bit integer vi = Q(wi)
corresponding to the underlying bits. Here, [−qmax, qmax] is the symmetric quantization range
and signed integers use two’s complement representation. Then, Q : [−qmax, qmax] 7→ {−2m−1 −
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Global, qmax = 1, m = 8 Per-Layer (=Normal) +Asymmetric +Clipping0.1, m = 4

Figure 6.4: Quantization and Random Bit Errors: Original weights (x-axis) plotted against
perturbed weights with bit errors (y-axis), for different fixed-point quantization schemes with
m = 8 bit (left) and p = 2.5%. We also show the m = 4 bit case with Clipping at wmax = 0.1, c.f.
Section 6.3.2. Color indicates absolute error: from zero (violet) to the maximal possible error
(yellow) of 1 (left) and 0.1 (right). Asymmetric per-layer quantization reduces the impact of bit
errors compared to the symmetric per-layer/global quantization. Clipping reduces absolute
error, but the errors relative to wmax increase.

1, . . . , 2m−1 − 1} is defined as

Q(wi) =
⌊wi

∆

⌋
, Q−1(vi) = ∆vi, ∆ =

qmax

2m−1 − 1
. (6.7)

This quantization is symmetric around zero and zero is represented exactly. By default,
we only quantize weights, not activations or gradients. However, in contrast to related
work [ZNZ+16, McD18, JKC+18, LWL+19], we quantize all layers, including biases and batch
normalization parameters [IS15b] (commonly “folded” into preceding convolutional layers).
Flipping the most significant bit (MSB, i.e., sign bit) leads to an absolute error of half the
quantization range, i.e., qmax (yellow in Figure 6.4). Flipping the least significant bit (LSB)
incurs an error of ∆. Thus, the impact of bit errors “scales with” qmax.

Global and Per-Layer Quantization: qmax can be chosen to accommodate all weights, i.e.,
qmax = maxi |wi|. This is called global quantization. However, it has become standard to
apply quantization per-layer allowing to adapt qmax to each layer. As in PyTorch [PGC+17],
we consider weights and biases of each layer separately. By reducing the quantization range
for each layer individually, the errors incurred by bit flips are automatically minimized, c.f.
Figure 6.4. The per-layer, symmetric quantization is our default reference, referred to as
Normal. However, it turns out that it is further beneficial to consider arbitrary quantization
ranges [qmin, qmax] (allowing qmin > 0). In practice, we first map [qmin, qmax] to [−1, 1] using the
transformation N and then quantize [−1, 1] using Equation (6.7):

N(wi) =

(
wi − qmin

qmax − qmin

)
· 2 − 1. (6.8)

Overall, per-layer asymmetric quantization has the finest granularity, i.e., lowest ∆ and approx-
imation error. Nevertheless, it is not the most robust quantization.

Robust Quantization: Equation (6.7) does not provide optimal robustness against bit errors.
First, the floor operation ⌊wi/∆⌋ is commonly implemented as float-to-integer conversion. Using
proper rounding ⌈wi/∆⌋ instead has negligible impact on accuracy, even though quantization
error improves slightly. In stark contrast, bit error robustness is improved considerably. During
training, deep neural networks can compensate the differences in approximation errors, even
for small precision m < 8. However, at test time, rounding decreases the impact of bit errors
considerably. Second, Equation (6.7) uses signed integers for symmetric quantization. For
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Figure 6.5: Effect of Weight Clipping: On CIFAR10, weight clipping constraints the weights
(right), thereby implicitly limiting the possible range for logits (left, blue). However, even
for wmax=0.1 the deep neural network is able to produce high confidences (middle, blue),
suggesting that more weights are used to obtain these logits. Furthermore, the impact of
random bit errors, p = 1%, on the logits/confidences (red) is reduced significantly. RandBET
(trained with p = 1%, w/o weight clipping), increases the range of weights and is less effective
at preserving logit/confidence distribution.

asymmetric quantization, with arbitrary [qmin, qmax], we found quantization into unsigned
integers to improve robustness, i.e., Q : [qmin, qmax] 7→ {0, . . . , 2m − 1}. This is implemented
using an additive term of 2m−1 − 1 in Equation (6.7):

Q(wi) =
⌈wi

∆

⌋
+ (2m−1 − 1), Q−1(vi) = ∆(vi − (2m−1 − 1)) (6.9)

While accuracy is not affected, the effect of bit errors in the sign bit changes: in symmetric
quantization, the sign bit mirrors the sign of the weight value. For asymmetric quantization,
an unsigned integer representation is more meaningful. Overall, our robust fixed-point
quantization (RQuant) uses per-layer, asymmetric quantization into unsigned integers with
rounding. These seemingly small differences have little to no impact on accuracy but tremendous
impact on robustness against bit errors, see Section 6.4.4.

6.3.2 Training with Weight Clipping as Regularization

Simple weight clipping refers to constraining the weights to [−wmax, wmax] during training,
where wmax is a hyperparameter. Generally, wmax is independent of the quantization range(s)
which always adapt(s) to the weight range(s) at hand. However, weight clipping limits the
maximum possible quantization range (c.f. Section 6.3.1), i.e., qmax ≤ wmax. It might seem that
weight clipping with small wmax automatically improves robustness against bit errors as the
absolute errors are reduced. However, the relative errors are not influenced by rescaling. As the
model’s decision is usually invariant to rescaling, reducing the scale of the weights does not
impact robustness. In fact, the mean relative error of the weights in Figure 6.4 (right) increased
with clipping at wmax=0.1. Thus, weight clipping does not “trivially” improve robustness by



94 chapter 6. random and adversarial bit error robustness

Figure 6.6: Per-Layer Weight Clipping: On CIFAR, we show the weight ranges, per layer, cor-
responding to RQuant (i.e., without weight clipping). As can be seen, few layers exhibit large
ranges. Thus, per-layer clipping computes a layer-specific weight constraint [−wmax,l , wmax,l ],
derived from a global wmax and based on the weight range relative to the layer with largest
range. As not to “over-constraint” layers with small weight range, a minimum range of
[−0.2wmax, 0.2wmax] is enforced.

reducing the scale of weights. Nevertheless, we found that weight clipping actually improves
robustness considerably on top of our robust quantization.

The interplay of weight clipping and minimizing the cross-entropy loss during training is
the key. High confidences can only be achieved by large differences in the logits. Because the
weights are limited to [−wmax, wmax], large logits can only be obtained using more weights in
each layer to produce larger outputs. This is illustrated in Figure 6.5 (right): using wmax=0.1,
the weights are (depending on the layer) up to 5 times smaller. Considering deep neural
networks, the “effective” scale factor for the logits is significantly larger, scaling exponentially
with the number of layers. Thus, using wmax=0.1 is a significant constraint on the ability
of the deep neural network to produce large logits. As a result, weight clipping produces
a much more uniform weight distribution. Figure 6.5 (left and middle) shows that a model
constrained at wmax=0.1 can produce similar logit and confidence distributions (in blue) as
the unclipped one. And random bit errors have a significantly smaller impact on the logits
and confidences (in red). Figure 6.5 (right column) also shows the induced redundancy in the
weight distribution. Weight clipping leads to more weights being utilized, i.e., less weights are
zero (note log-scale, marked in red, on the y-axis). Also, more weights reach large values. We
found weight clipping to be an easy-to-use but effective measure to improve weight robustness.

Per-Layer Weight Clipping: We further extend “global” weight clipping by allowing per-layer
weight constraints wmax,l . This is based on the observation that weights in different layers
can have radically different ranges as explicitly shown in Figure 6.6. We found that only
few layers exhibit large weight ranges, e.g., the first few convolutional layers (“conv1” “and
conv2” in Figure 6.6), few group normalization layers (“regn7” or “regn9”) and the final
logit layer (“logits”). Thus, these layers are affected significantly when reducing wmax and
lead to poor (clean) Err in Table 6.4, e.g., for wmax = 0.05. The regularization effect is less
pronounced for the remaining layers, reducing the potential impact in terms of robustness.
Thus, per-layer weight clipping constraints each layer l individually to [−wmax,l , wmax,l ]. Here,
weights and biases are treated individually as biases exhibit significantly different ranges.
The per-layer constraints wmax,l are derived from the relative weight ranges without weight
clipping. Letting wl,i be the weights of layer l with the largest absolute weight value, we
define κl′ = maxi |wl′ ,i |/maxi |wl,i | ≤ 1 for all other layers l′. Then, for each l′, we define wmax,l
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Figure 6.7: Random Bit Error Training (RandBET): We illustrate the data-flow for RandBET as
in Algorithm 2. Here, BErrp injects random bit errors in the quantized weights v(t) = Q(w(t)),
resulting in ṽ(t), while the forward pass is performed on the dequantized perturbed weights
w̃(t)

q = Q−1(ṽ(t)), i.e., fixed-point arithmetic is not emulated. The weight update during training
is not affected by bit errors and computed in floating point.

as max(0.2, κl′)wmax. We use Clippingwmax=0.1 to refer to global weight clipping with, e.g.,
wmax = 0.1, and PLClippingwmax=0.25 to denote per-layer weight clipping with, e.g., wmax = 0.25.

Weight Clipping with Group/Batch Normalization: While weight clipping during training
is easy to implement, we have to make a simple adjustment to group and batch normalization
layers [IS15b, WH18]: we reparameterize the scale parameter α of group/batch normalization,
which usually defaults to α = 1 and may cause problems when clipped, e.g., to [−0.1, 0.1]. In
particular with aggressive weight clipping, α ≤ wmax ≪ 1, the normalization layers lose their
ability to represent the identity function, considered important in [IS15b]. Our reparameter-
ization introduces a learnable, auxiliary parameter α′ such that α is α = 1 + α′ to solve this
problem.

6.3.3 Random Bit Error Training (RandBET)

In addition to weight clipping and robust quantization, we inject random bit errors with
probability p during training to further improve robustness. This results in the following
learning problem, which we optimize as illustrated in Figure 6.7:

minw E[L( f (x; w̃), y) + L( f (x; w), y)] s.t. v = Q(w), ṽ = BErrp(v), w̃ = Q−1(ṽ). (6.10)

where (x, y) are labeled examples, L is the cross-entropy loss and v = Q(w) denotes the
(element-wise) quantized weights w which are to be learned. BErrp(v) injects random bit
errors with rate p in v. Note that we consider both the loss on clean weights and weights with
bit errors. This is desirable to avoid an increase in (clean) test error and stabilizes training
compared to training only on bit errors in the weights. Note that bit error rate p implies, in
expectation, pmW bit errors. Following Algorithm 2, we use stochastic gradient descent to
optimize Equation (6.10), by performing the gradient computation using the perturbed weights
w̃ = Q−1(ṽ) with ṽ = BErrp(v), while applying the gradient update on the (floating-point)
clean weights w. In spirit, this is similar to data augmentation, however, the perturbation is
applied on the weights instead of the inputs. As we found that introducing bit errors right from
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Algorithm 2 Random Bit Error Training (RandBET): The forward passes are performed using
dequantized weights (blue). Perturbed weights are obtained by injecting bit errors in the
quantized weights (in red). The update, averaging gradients from both forward passes, is
performed in floating-point (magenta). Also see Figure 6.7.

1: RandBET(p):
2: initialize w(0)

3: for t = 0, . . . , T − 1 do
4: sample batch {(xb, yb)}B

b=1
5: w(t) = min(wmax, max(−wmax, w(t))) # clipping
6: v(t) = Q(w(t)) # quantization
7: w(t)

q = Q−1(v(t)) # dequantization
8: # clean forward and backward pass:
9: ∆(t) = ∇w ∑B

b=1 L( f (xb; w(t)
q ), yb)

10: # perturbed forward and backward pass:
11: w̃(t)

q =Q−1(BErrp(v(t))) (or AdvBitErrors(v(t), ϵ))

12: ∆̃(t) = ∇w ∑B
b=1 L( f (xb; w̃(t)

q ), yb)
13: # average gradients and weight update:
14: w(t+1) = w(t) − γ(∆(t) + ∆̃(t))
15: end for
16: return w(T)

q = Q−1(Q(w(T)))

the start may prevent the deep neural network from converging, we apply bit errors as soon as
the (clean) cross-entropy loss is below 1.75. Interestingly, weight clipping and RandBET have
somewhat orthogonal effects, which allows combining them easily in practice: While weight
clipping encourages redundancy in weights by constraining them to [−wmax, wmax], RandBET
(w/o weight clipping) causes the model to have larger tails in the weight distribution, as shown
in Figure 6.5 (bottom). However, considering logits and confidences, especially with random
bit errors (in red), RandBET alone performs slightly worse than Clipping0.1. Thus, RandBET
becomes particularly effective when combined with weight clipping, as we make explicit using
the notation RandBETwmax and in Algorithm 2.

6.3.4 Adversarial Bit Error Training (AdvBET)

In order to specifically address adversarial bit errors (c.f. Section 6.2.2), RandBET can be re-
formulated to train with adversarial bit errors. Essentially, this results in a min-max formulation
similar to [MMS+18]:

minw E[maxṽ L( f (x; Q−1(ṽ)), y)] s.t. dH(ṽ, v) ≤ ϵ, dH(ṽi, vi) ≤ 1 (6.11)

where the inner maximization problem, i.e., the attack is solved following Algorithm 1. In
addition to not training on adversarial bit errors for a (clean) cross-entropy above 1.75, we clip
gradients to [−0.05, 0.05]. This is required as the cross-entropy loss on adversarially perturbed
weights w̃ can easily be one or two magnitudes larger than on the clean weights. Unfortunately,
training is very sensitive to the hyperparameters of the attack, including the step size, gradient
normalization and momentum. This holds both for convergence during training and for the
obtained robustness after training.
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6.4 Experiments

We present experiments on MNIST [LBBH98] and CIFAR [Kri09], considering random bit error
robustness first, followed by discussing adversarial bit errors. After introducing our experimental
setup (Section 6.4.1) and introducing robustness metrics including a simple generalization
bound (Section 6.4.2), we first show that batch normalization (BN) [IS15a] reduces robustness
significantly. Subsequently, we analyze the impact of fixed-point quantization schemes on
robustness (Section 6.4.4) and discuss weight clipping (Clipping, Section 6.4.5), showing
that improved robustness originates from increased redundancy in the weight distribution.
Then, we focus on random bit error training (RandBET, Section 6.4.6). We show that related
work [KHM+18a, KOY+19] does not generalize, while RandBET generalizes across chips and
voltages, as demonstrated on profiled bit errors. We further consider random bit errors in
inputs and activations (Section 6.4.7). Finally, we discuss our adversarial bit error attack in
comparison to BFA [RHL+20] (Section 6.4.8) and show that Clipping as well as RandBET or
AdvBET increase robustness against adversarial bit errors significantly. We start by discussing
our experimental set

6.4.1 Setup and Baselines

Architecture: We use SimpleNet [HRFS16], providing comparable performance to ResNets
[HZRS16a] with only W=5.5Mio weights on CIFAR10. On MNIST, we halve all channel widths
and one stage of convolutional layers including a pooling layer is skipped, resulting in roughly
1Mio weights. SimpleNet compares favorably to, e.g., VGG [SZ15]: VGG-16 has 14M weights
on CIFAR. Additionally, we found SimpleNet to be easier to train without batch normalization
(BN) [IS15b]. On CIFAR100, we use a Wide ResNet (WRN) [ZK16]. In all cases, we replaced
BN with (reparameterized) group normalization (GN) [WH18], as models using BN yield
consistently worse robustness against bit errors.

Training: We use stochastic gradient descent to minimize cross-entropy loss. We use an
initial learning rate of 0.05, multiplied by 0.1 after 2/5, 3/5 and 4/5 of 100/250 epochs on
MNIST/CIFAR. Our batch size is 128 and momentum of 0.9 is used together with weight
decay of 5 · 10−4. On CIFAR, we whiten the input images and use AutoAugment2 [CZM+19]
with Cutout [DT17]. Cutout is applied with a window size of 16 × 16, and independent
of AutoAugment, we apply random cropping with up to 4 pixels. Created black spaces
are filled using the mean image color (grayish). Initialization follows [HZRS15]. The full
training set is used for training, and we do not rely on early stopping. For RandBET, we use
λ = 1 and start injecting bit errors when the loss is below 1.75 on MNIST/CIFAR10 or 3.5
on CIFAR100. Normal training with the standard and our robust quantization are denoted
Normal and RQuant, respectively. Weight clipping with wmax is referred to as Clippingwmax

and its per-layer variant is denoted PLClippingwmax . Similarly, we refer to RandBET/AdvBET
with (global) weight clipping as RandBETwmax/AdvBETwmax and with per-layer weight clipping
as PLRandBETwmax . For RQuant, m = 8, we obtain 4.3% Err on CIFAR10 and 18.5% Err on
CIFAR100; on MNIST, 0.47% Err for m = 2. For AdvBET, we use λ = 0 and also start injecting
adversarial bit errors when the loss is 1.75 or smaller (3.5 on CIFAR100). We use T = 10
iterations of our adversarial bit error attack, with learning rate 0.5, no backtracking [SHS20] or
momentum [DLP+18], and per-layer L∞ gradient normalization.

2https://github.com/DeepVoltaire/AutoAugment

https://github.com/DeepVoltaire/AutoAugment


98 chapter 6. random and adversarial bit error robustness

Bit Flip Attack (BFA) [RHF19a] Baseline: We follow the official PyTorch code3. Specifically,
we use the provided implementation of BFA to attack our models by integrating our SimpleNet
models into the provided attack/evaluation code. This means that we also use the quantization
scheme of [RHF19a], not our robust fixed-point quantization scheme. However, our models
still used RQuant (and optionally Clipping or RandBET) during training. We use m = 8
bits. We allow 5 bit flips per iteration, for a total of T iterations, totaling ϵ = 5 · T bit flips.
For comparability, we adapted the code to compute adversarial bit flips on the last 100 test
examples and evaluate on the first 9000 test examples. We allow 5 restarts for each ϵ.

6.4.2 Robust Test Error and Generalization Bound

For evaluation, we report (clean) test error Err (lower is better, ↓), corresponding to clean
weights, and robust test error RErr (↓) which is the test error after injecting bit errors into
the weights on 9000 test examples. For random bit errors, we simulate 50 different chips with
enough memory arrays to accommodate all weights as described in detail in Section 6.2.1. The
pattern, i.e., spatial distribution, of bit errors for each chip is fixed, while across all 50 chips, bit
errors are uniformly distributed. These bit errors are pre-determined once for all experiments,
making our robustness results entirely comparable across all models and bit error rates p.

For adversarial bit errors, we report max (i.e., worst-case) RErr across a total of 80 restarts
using the following settings: 5 restarts for the untargeted attack with learning rate 1 with and
without momentum 0.9 (10 restarts in total) and 10 restarts for the targeted attack (1 for each
potential target label on MNIST and CIFAR10). This is done attacking all layers. Furthermore,
we use 5 untargeted restarts with momentum, and 10 targeted restarts for: attacking only the
logit layer, only the first convolutional layer, both the logit and the first convolutional layer,
or all layers except the logit or first convolutional layer. In total, this makes 20 + 4 · 15 = 80
restarts of our adversarial bit error attack. We use T = 100 iterations and perform optimization
on 100 held-out test examples.

Bounding Generalization to Random Bit Errors: While we focus on empirically evaluating
robustness, we briefly derive a simple probabilistic bound that sheds light on which deviations
are to be expected from the empirical results reported later on. Let w denote the final weights
of a trained neural network f . We test f using n i.i.d. test examples, i.e., (xi, yi)

n
i=1. Further, let

w̃ denote the weights where each bit of the (quantized) weights w is flipped with probability p
uniformly at random. Then, the expected clean and robust errors of f are given by

E[1 f (x;w) ̸=y] = Pr( f (x; w) ̸= y), E[1 f (x;w̃) ̸=y] = Pr( f (x; w̃) ̸= y).

Here, the weights of the neural network are themselves random variables. In the following,
for simplicity, we use x, y, w, and w̃ to denote the random variables corresponding to test
example, test label, weights and weights with random bit errors. With xj, yj, wi and w̃i we
denote the actual examples, i.e., actual examples (xj, yj) as well as clean and perturbed weights
wi, w̃i. Then, the following proposition derives a simple, probabilistic bound on the deviation
of expected robust error from the empirically measured RErr:
Proposition 1. Let w̃i, i = 1, . . . , l examples of weights with random bit errors. Then it holds

Pr
( 1

nl

n

∑
j=1

l

∑
i=1

1 f (xj;w̃i) ̸=yj
− Pr( f (x; w̃) ̸= y) ≥ ϵ

)
≤ (n + 1)e

−nϵ2 l
(
√

l+
√

n)2 .

3https://github.com/elliothe/BFA

https://github.com/elliothe/BFA
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As alternative formulation, with probability 1 − δ it holds

Pr( f (x; w̃i) ̸= y) ≤ 1
nl

n

∑
j=1

l

∑
i=1

1 f (xj;w̃i) ̸=yj
+

√√√√ log
(

n+1
δ

)
n

√
l +

√
n√

l
.

Proof. Let 0 < α < 1. Using the Hoeffding inequality and union bound, we have:

Pr
(

maxj=1,...,n
1
l

l

∑
i=1

1 f (xj ;w̃i) ̸=yj
− Ew̃[1 f (xj ;w̃) ̸=yj

] > αϵ
)

=Pr
( ⋃

j=1,...,n

{1
l

l

∑
i=1

1 f (xj ;w̃i) ̸=yj
− Ew̃[1 f (xj ;w̃) ̸=yj

] > αϵ
})

≤ n e−lα2ϵ2
.

Then, again by Hoeffding’s inequality, it holds:

Pr
( 1

n

n

∑
j=1

Ew̃[1 f (xj ;w̃) ̸=yj
]− Ex,y[Ew̃[1 f (x;w̃) ̸=y]] > (1 − α)ϵ

)
≤ e−nϵ2(1−α)2

.

Thus, using a + b > ϵ =⇒ {a > αϵ} ∪ {b > (1 − α)ϵ} gives us:

Pr
( 1

nl

n

∑
j=1

l

∑
i=1

1 f (xj ;w̃i) ̸=yj
− Pr( f (x; w̃) ̸= y) ≥ ϵ

)
=Pr

( 1
n

n

∑
j=1

(1
l

l

∑
i=1

1 f (xj ;w̃i) ̸=yj
− Ew̃[1 f (xj ;w̃i) ̸=yj

]
)
+

1
n

n

∑
j=1

Ew̃[1 f (xj ;w̃i) ̸=yj
]− Pr( f (x; w̃) ̸= y) ≥ ϵ

)
≤Pr

( 1
n

n

∑
j=1

(1
l

l

∑
i=1

1 f (xj ;w̃i) ̸=yj
− Ew̃[1 f (xj ;w̃) ̸=yj

]
)
> αϵ

)
+ Pr

( 1
n

n

∑
j=1

Ew̃[1 f (xj ;w̃) ̸=yj
]− Pr( f (x; w̃) ̸= y) ≥ (1 − α)ϵ

)
≤ n e−lα2ϵ2

+ e−nϵ2(1−α)2

Having both exponential terms have the same exponent yields α =
√

n√
l+

√
n

and we get the upper bound

of the proposition.

The samples of bit error injected weights {w̃i}l
i=1 can actually be different for every test

example (xj, yj), even though this is not the case in our evaluation. Thus, the above bound
involves a stronger result: for any test example, the empirical test error with random bit errors
(i.e., robust test error RErr) and the expected one have to be similar with the same margin.
Note also that this bound holds for any fixed bit error distribution as the only requirement is
that the bit error patterns we draw are i.i.d., but not necessarily the bit errors on these patterns.
Later, we will consider results with l = 106, i.e., l ≫ n with n = 104 on CIFAR10 such that
l/(

√
l+

√
n)2 tends towards one. With δ = 0.01 the excess term√√√√ log

(
n+1

δ

)
n

√
l +

√
n√

l
(6.12)

is equal to 4.09%. Larger test sets provide stronger guarantees, e.g., n = 105 yields 1.67%.
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Normalization Err
in %

RErr in %
(CIFAR10) p=0.1 p=0.5

GN
Normal 4.32 5.54 11.28
Clipping0.1 4.82 5.58 6.95

BN w/ Accumulated Statistics

BN
Normal 3.83 6.36 52.52
Clipping0.1 4.46 5.32 8.25

BN w/ Batch Statistics at Test Time

BN
Normal 3.83 6.65 9.63
Clipping0.1 4.46 6.57 7.29

Table 6.1: Batch Normalization is not Robust: RErr with
group normalization (GN) or batch normalization (BN).
RErr increases when using BN even though clean Err
improves slightly compared GN. However, using batch
statistics at test time (i.e., “training mode” in PyTorch)
improves RErr significantly indicating that the statistics
accumulated throughout training do not account for
random bit errors. Thus, we use group normalization
as default.

6.4.3 Batch Normalization is not Robust

While BN generally reduces test error, from 4.3% to 3.8% for our SimpleNet on CIFAR10, we
found that robustness against random bit errors is reduced significantly. Specifically, Table 6.1
demonstrates that RErr increases significantly when using BN compared to GN indicating
that BN is more vulnerable to bit errors in the weights. For example, for p=0.5% and without
clipping, RErr increases from 11.28% to staggering 52.52% when replacing GN with BN. We
suspect that the running statistics accumulated during training do not account for the random
bit errors at test time, even for RandBET. This is confirmed in Table 6.1 (bottom) showing that
RErr reduces significantly when using the batch statistics at test time. Generally, BN improves
accuracy, but might not be beneficial in terms of robustness, as also discussed for adversarial
examples [GGT+19]. Using GN also motivates our use of SimpleNet instead of, e.g., ResNet-50,
which generally performs worse with GN.

6.4.4 Quantization Choice Impacts Robustness

Quantization schemes affect robustness significantly, even when not affecting accuracy. For
example, Table 6.2 shows that per-layer quantization reduces RErr significantly for small bit
error rates, e.g., p = 0.05%. While asymmetric quantization further reduces the quantization
range, RErr increases, especially for large bit error rates, e.g., p = 0.5% (marked in red). This
is despite Figure 6.4 showing a slightly smaller impact of bit errors. This is caused by an
asymmetric quantization into signed integers in two’s complement representation: Bit flips in
the most significant bit (MSB, i.e., sign bit) are not meaningful if the quantized range is not
symmetric as the sign bit does not reflect the sign of the represented weight value4. For larger
bit error rates p, this happens more and more frequently, having a larger impact on RErr.

Similarly, replacing integer conversion of wi/∆ by proper rounding, ⌈wi/∆⌋, reduces RErr
significantly (resulting in our RQuant). We emphasize that, for m = 8 bit, there is no significant
difference in terms of clean Err. However, using proper rounding reduces the approximation
error slightly. Using p = 2.5% bit error rate, the average absolute error (in the weights) across
10 random bit error patterns reduces by 2%. Nevertheless, it has significantly larger impact
on RErr. For m = 4, this is more pronounced: rounding reduces the average absolute error by
roughly 67%. Surprisingly, this is not at all reflected in the clean Err, which only decreases
from 5.81% to 5.29%. It seems that the deep neural network learns to compensate these errors

4An unsigned integer of value 127 is represented as 01111111. Flipping the most significant (left-most) bit gives
11111111 corresponding to 255, i.e., the value increases. For a signed integer in two’s complement representation,
the same bit flip changes the value to −1, while 0-to-1 flips not affecting the sign bit generally increase the value.
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Quantization Schemes Err
in %

RErr in %
(CIFAR10) p=0.05 p=0.5

8
bi

t

Equation (6.7), global 4.63 86.01 ±3.65 90.71 ±0.49

Equation (6.7), per-layer 4.36 5.51 ±0.19 24.76 ±4.71

+asymmetric 4.36 6.47 ±0.22 40.78 ±7.56

+unsigned 4.42 6.97 ±0.28 17.00 ±2.77

+rounding (=RQuant) 4.32 5.10 ±0.13 11.28 ±1.47

4
bi

t w/o rounding* 5.81 90.40 ±0.21 90.36 ±0.2

w/ rounding* 5.29 5.75 ±0.06 7.71 ±0.36

Table 6.2: Quantization Robustness:
RErr for random bit errors at p=0.05%
and p=0.5% for normal training with
different quantization schemes. Minor
differences can have large impact on
RErr while clean test error is largely
unaffected. For 8 bit the second row
corresponds to Normal. For 4 bits we
show Clipping0.1 +RQuant with and
without rounding.

Model Err
in %

Conf
in %

Conf
p=1

RErr in %
(CIFAR10) p=0.1 p=1

RQuant 4.32 97.42 78.43 5.54 32.05
Clipping0.15 4.42 96.90 88.41 5.31 13.08
Clipping0.1 4.82 96.66 92.97 5.58 8.93
Clipping0.05 5.44 95.90 94.73 5.90 7.18
Clipping0.025 7.10 84.69 83.28 7.40 8.18
Clipping0.15 +LS 4.67 88.22 47.55 5.83 29.40
Clipping0.1 +LS 4.82 87.90 78.89 6.10 10.59
Clipping0.05 +LS 5.30 87.41 85.04 6.43 7.30
PLClipping0.5 4.61 97.06 91.31 5.48 10.9
PLClipping0.25 4.96 96.90 95.67 5.39 7.04
PLClipping0.1 5.62 94.57 93.98 5.91 6.65

Table 6.3: Weight Clipping Robust-
ness: Clean Err, RErr, clean confi-
dence and confidence at p=1% bit er-
rors (in %, higher is better, ↑) for Clip-
ping, Clipping with label smoothing
(+LS) and PLClipping. Err increases
with extreme weight clipping. LS con-
sistently reduces robustness, indicat-
ing that robustness is due to enforcing
high confidence during training and
weight clipping. Per-layer weight con-
straints are beneficial in terms of both
robustness and clean performance.

during training. At test time, however, RErr reflects this difference in terms of robustness.
Overall, we found that robust quantization plays a key role. While both weight clipping

(Clipping) and random bit error training (RandBET) can improve robustness further, robust
quantization lays the foundation for these improvements to be possible. Thus, we encourage
authors to consider robustness in the design of future network quantization schemes. Even
simple improvements over our basic fixed-point quantization scheme may have significant
impact in terms of robustness. For example, proper handling of outliers [ZST+18, SSH15],
learned quantization [ZYYH18], or adaptive/non-uniform quantization [ZMCF18, PYV18,
NvBBW19] are promising directions to further improve robustness. Finally, we believe that this
also poses new theoretical challenges, i.e., studying (fixed-point) quantization with respect to
robustness and quantization error.

6.4.5 Weight Clipping Improves Robustness

While the quantization range adapts to the weight range after every update during training,
weight clipping explicitly constraints the weights to [−wmax, wmax]. Table 6.3 shows the effect
of different wmax for CIFAR10 with 8 bit precision. The clean test error is not affected for
Clippingwmax=0.15 but one has already strong robustness improvements for p = 1% compared
to RQuant (RErr of 13.18% vs 32.05%). Further reducing wmax leads to a slow increase in clean
Err and decrease in average clean confidence, while significantly improving RErr to 7.18% for
p = 1% at wmax = 0.05. For wmax = 0.025 the deep neural network is no longer able to achieve
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Model Err
in %

RErr in %
(CIFAR10, see text) p=0.1 p=1

Normal 4.32 5.54 32.05
Clipping0.1 4.82 5.58 8.93
Normal → Clipping0.1 4.32 5.55 88.71
Clipping0.1 → Normal 4.82 78.47 9.20

RQuant RandBET Clipping0.1 Clipping0.05

0

0.2

0.4

0.138

0.202

0.094
0.064

0.21 0.22

0.374

0.479

0.127

0.048

0.147 0.166

CIFAR-10: Redundancy Metrics

Relative Abs Error
Weight Relevance
ReLU Relevance

Figure 6.8: Left: Weight Clipping with Weight Scaling: For group normalization (GN) without
the reparameterization, our deep neural networks are scale-invariant. Scaling RQuant down
to the weight range of Clipping0.1, however, does not improve robustness. More importantly,
scaling Clipping0.1 up to have the same weight range as RQuant preserves robustness. Thus,
the robustness benefit of Clipping is not due to reduced quantization range or smaller absolute
errors. Right: Measuring Redundancy in Weight Clipping. We plot various measures of
redundancy, see the text for discussion and details. The relative absolute error is computed
considering random bit errors with probability p = 1%.

high confidence (marked in red) which leads to stronger loss of clean Err. Interestingly, the gap
between clean and perturbed confidences under bit errors for p = 1% is (almost) monotonically
decreasing. These findings generalize to other datasets and precisions. However, for low
precision m ≤ 4 the effects are stronger as RQuant alone does not yield any robust models
and weight clipping is essential for achieving robustness.

As discussed in Section 6.3.2, the robustness originates in the cross-entropy loss enforcing
high confidences on the training set and thus large logits while weight clipping works against
having large logits. Therefore, the network has to utilize more weights with larger absolute
values (compared to wmax). In order to test this hypothesis, we limit the confidences that need
to be achieved via label smoothing [SVI+16], targeting 0.9 for the true class and 0.1/9 for the
other classes. According to Section 6.3.2, this should lead to less robustness, as the model
has to use “less” weights. Indeed, in Table 6.3, RErr at p = 1% increases from 13.08% for
Clipping0.15 to 29.4% when using label smoothing (marked in blue). Moreover, the difference
between average clean and perturbed confidence is significantly larger for neural networks
trained with label smoothing.

Figure 6.8 (left) presents another experiment in support of our hypothesis. When using
GN, the trained models are scale-invariant in their weights (e.g., as discussed in [DPBB17]).
So, we down-scale the weights of RQuant to have the same maximum absolute weight value
as Clipping0.1, referred to as RQuant → Clipping0.1. This scaling is applied globally, not per
layer and does not affect the GN parameters. Similarly, we up-scale the weights of Clipping0.1
to the same maximum absolute weight value as RQuant, denoted Clipping0.1 → RQuant.
However, “just” down-scaling does not induce robustness, as expected. More importantly,
up-scaling the weights after training with weight clipping, wmax = 0.1, preservers robustness.
This emphasizes that robustness does not depend on scale, i.e., weight clipping does not reduce
the impact of bit errors by reducing scale, but stems from increased weight redundancy.

In order to quantify the obtained redundancy, Figure 6.8 (right) presents three simple
measures of redundancy in both weights and activations. The relative absolute error is computed
with respect to p = 1% bit error rate and decreases for Clipping, meaning that random bit errors
have less impact. Weight relevance is computed as the mean of absolute weights normalized by
the maximum absolute weight. This metric shows that more weights become, considering their
absolute value, relevant when using Clipping. Finally, We also measure activation redundancy
using ReLU relevance. Here, we compute the fraction of non-zero activations after the final
ReLU activation. Again, Clipping increases redundancy significantly. Overall, these measures
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Model (CIFAR10) RErr in %, p in %

Evaluation on Fixed Pattern p=1 p=2.5
PattBET p=2.5 14.14 7.87
PattBET0.15 p=2.5 8.50 7.41

Evaluation on Random Patterns p=1 p=2.5
PattBET0.15 p=2.5 12.09 61.59

Table 6.4: Fixed Pattern Bit Error Training:
RErr for training on an entirely fixed bit
error pattern (PattBET). Top: Evaluation
on the same pattern. PattBET trained on
p = 2.5% does not generalize to p = 1%
even though the bit errors for p = 1% are
a subset of those seen during training for
p = 2.5% (in red). Bottom: PattBET also
fails to generalize to random bit errors.

Model (CIFAR10) Err
in %

RErr in %
p in % p=0.5 p=1 p=1.5

8b
it

RQuant 4.32 11.28 ±1.47 32.05 ±6 68.65 ±9.23

Clipping0.1 4.82 6.95 ±0.24 8.93 ±0.46 12.22 ±1.29

PLClipping0.25 4.96 6.21 ±0.16 7.04 ±0.28 8.14 ±0.49

RandBET0.1 p=0.1 4.72 6.74 ±0.29 8.53 ±0.58 11.40 ±1.27

RandBET0.1 p=1 4.90 6.36 ±0.17 7.41 ±0.29 8.65 ±0.37

PLRandBET0.25 p=0.1 4.49 5.80 ±0.16 6.65 ±0.22 7.59 ±0.34

PLRandBET0.25 p=1 4.62 5.62 ±0.13 6.36 ±0.2 7.02 ±0.27

4b
it

Clipping0.1 5.29 7.71 ±0.36 10.62 ±1.08 15.79 ±2.54

PLClipping0.25 4.63 6.15 ±0.16 7.34 ±0.33 8.70 ±0.62

RandBET0.1 p=1 5.39 7.04 ±0.21 8.34 ±0.42 9.77 ±0.81

PLRandBET0.25 p=1 4.83 5.95 ±0.12 6.65 ±0.19 7.48 ±0.32

Table 6.5: Random Bit Error
Training (RandBET). RErr (with
standard deviation) of RandBET
evaluated at various bit error
rates p for m=8, 4 bits. For low
p, weight clipping provides suffi-
cient robustness, especially con-
sidering PLClipping. However
for p≥0.5, RandBET increases
robustness significantly, both
based on Clipping and PLClip-
ping, especially for m=4bits.

support our hypothesis that improved robustness is caused by increased weight redundancy.
Per-layer weight clipping, i.e., PLClipping, further improves robustness and at the same

time lowers test error compared to Clipping. For example, in Table 6.3, PLClipping0.2 reduces
RErr for p=1% to 6.48% compared to 7.18 for Clipping0.05. Simultaneously, clean Err improves
from 5.44% to 4.84. This emphasizes that layers can have radically different weight ranges and
thus regularization through weight clipping needs to be layer-specific. Appendix C.4.3 shows
that weight clipping also leads to robustness against L∞ perturbations which generally affect
all weights in contrast to random bit errors, and provides more qualitative results about the
change of the weight distribution induced by clipping.

6.4.6 RandBET Yields Generalizable Robustness

In the following, we present experiments on RandBET, showing that training on fixed, profiled
bit errors patterns is not sufficient to generalize across voltages and chips. Thus, training on
random bit errors in RandBET is essential, and further improves robustness when applied
on top of RQuant and Clipping. Finally, we present results when evaluating RandBET on
real, profiled bit errors corresponding to two different chips. Furthermore, both Clipping and
RandBET can also be applied in a post-training quantization setting by replacing random bit
errors during RandBET with L0 errors in the (non-quantized) weights.

Training on Profiled Errors Does Not Generalize: Co-design approaches such as [KHM+18a,
KOY+19] combine training on profiled SRAM or DRAM bit errors with hardware-approaches to
limit the errors’ impact. However, profiling SRAM or DRAM requires expensive infrastructure,
expert knowledge and time. More importantly, training on profiled bit errors does not
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Chip
(Figure 6.3)

Model (CIFAR10) RErr in %

Chip 1 p≈0.86 p≈2.75
RandBET0.05 p=1.5 7.04 9.37
PLRandBET0.15, p=2 6.14 7.58

Chip 2 p≈0.14 p≈1.08
RandBET0.05 p=1.5 6.00 9.00
PLRandBET0.15, p=2 5.34 7.34

Table 6.6: Generalization to Profiled Bit
Errors: RErr for RandBET and PLRand-
BET on two different profiled chips. The
bit error rates differ across chips due to
different voltages. For chip 2, bit errors are
strongly aligned along columns and biased
towards 0-to-1 flips. Nevertheless, Rand-
BET generalizes surprisingly well.

Model (CIFAR10) Err
in %

RErr in %, p = 1%
(pL0= L0 error rate) 8bit 4bit

PLClipping0.5 4.61 11.28 ±1.14 16.93 ±2.77

PLClipping0.2 5.08 6.85 ±0.24 7.21 ±0.23

PLL0RandBET0.2, pL0=1 5.01 6.58 ±0.17 7.01 ±0.22

PLL0RandBET0.2, pL0=4 5.23 6.57 ±0.13 6.89 ±0.13

PLL0RandBET0.2, pL0=8 5.49 6.73 ±0.16 6.95 ±0.14

PLRandBET0.2, p=1 4.92* 6.29 ±0.14 6.60 ±0.18

Table 6.7: Robustness of Post-Training
Quantization: RErr against p=1% ran-
dom bit errors for PLClipping and
L0RandBET, i.e., error training with
L0 errors on weights, and post-training
quantization. Weight clipping and L0-
based error training allow obtaining ro-
bustness without knowing the quantiza-
tion scheme in advance.

generalize to previously unseen bit error distributions (e.g., other chips or voltages): Table 6.4
(top) shows RErr of PattBET, i.e., pattern-specific bit error training. The main problem is that
PattBET does not even generalize to lower bit error rates (i.e., higher voltages) of the same
pattern as trained on (marked in red). This is striking as the bit errors form a subset of the
bit errors seen during training: training with p = 2.5% bit errors does not provide robustness
for p = 1%, RErr increases 7.9% to 14.1%. It is not surprising, that Table 6.4 (bottom) also
demonstrates that PattBET does not generalize to random bit error patterns: RErr increases
from 7.4% to 61.6% at p = 2.5%. The same observations can be made when training on real,
profiled bit errors corresponding to the chips in Figure 6.3. However, obtaining robustness that
generalizes across voltages and chips is crucial for low-voltage operation to become practical.

RandBET Improves Robustness: Our RandBET, combined with weight clipping, further
improves robustness and additionally generalizes across chips and voltages. Table 6.5 shows
results for weight clipping and RandBET with wmax = 0.1 and m = 8, 4 bits precision.
RandBET is particularly effective against large bit error rates, e.g., p = 1.5%, reducing RErr
from 12.22% to 8.65% (m = 8 bits) with global weight clipping and even further to 7.02%
with per-layer clipping, i.e. PLRandBET. The effect is pronounced for 4 bits or even lower
precision, where models are generally less robust. The optimal combination of weight clipping
and RandBET depends on the bit error rate. However, we note that RandBET consistently
improves over Clipping or PLClipping. We also emphasize that RandBET generalizes to lower
bit errors than trained on, in stark contrast to the fixed-pattern training PattBET. On other
datasets, e.g., MNIST, RandBET allows operating at p = 15% bit error rate with 0.68% RErr
and only m = 2 bits. At this point, weight clipping alone yields ≥90% RErr.

RandBET Generalizes to Profiled Bit Errors: RandBET also generalizes to bit errors profiled
from real chips. Table 6.6 shows results on the two profiled chips of Figure 6.3. Profiling was
done at various voltage levels, resulting in different bit error rates for each chip. To simulate
various weights to memory mappings, we apply various offsets before linearly mapping
weights to the profiled SRAM arrays. Table 6.6 reports average RErr, showing that RandBET
generalizes quite well to these profiled bit errors. Regarding chip 1, RandBET performs very
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CIFAR10: Stress Test for Guarantees
Model Err

in %
RErr in %, p = 1%

(CIFAR10) l = 50 l = 1Mio

RQuant 4.32 32.05 ±6 31.97 ±6.35

Clipping0.05 5.44 7.18 ±0.16 7.19 ±0.2

RandBET0.05 p=2 5.42 6.71 ±0.11 6.73 ±0.15

PLClipping0.15 5.31 6.53 ±0.14 6.52 ±0.14

PLRandBET0.25, p=1 4.62 6.36 ±0.2 6.29 ±0.2

PLRandBET0.15, p=2 4.99 6.12 ±0.13 6.12 ±0.14

Table 6.8: Results for Probabilistic Guar-
antees: Average RErr and standard devia-
tion for l = 1Mio random bit error patterns.
In comparison with the results for l = 50 in
Table 6.5, there are no significant changes
in RErr.

well, even for large p ≈ 2.75, as the bit error distribution of chip 1 largely matches our error
model. In contrast, with chip 2 we picked a more difficult bit error distribution which is
strongly aligned along columns, potentially hitting many MSBs simultaneously. Thus, RErr is
similar for chip 2 even for a lower bit error rate p ≈ 1.08 (marked in red) but energy savings
are still possible without degrading prediction performance significantly.

RandBET and Post-Training Quantization: So far, we applied quantization during training,
i.e., we performed quantization-aware training [JKC+18, Kri18]. However, both (global and
per-layer) weight clipping as well as (bit) error training can be applied in a post-training
quantization setting. To this end, for RandBET, bit errors are simulated through L0 noise on
weights. Specifically, with probability pL0 each weight wi is changed to a (uniformly) random
value w̃i ∈ [−wmax, wmax]. The same error model applies for per-layer weight clipping. Note
that training with L0 errors with probability pL0 simulates bit error training with p = m · pL0 ,
referred to as L0RandBET. We apply our robust fixed-point quantization with m = 8 bits after
training to evaluate robustness to random bit errors. In Table 6.7, we demonstrate that both
Clipping and L0RandBET also provide robustness in a post-training quantization context.
This allows training robust models without knowing the exact quantization and precision used
for deployment in advance.

Guarantees from Proposition 1: Based on the bound derived in Section 6.4.2, we conduct
experiments with l = 1Mio random bit error patterns, such that l ≫ n where n = 10k is the
number of test examples on CIFAR10. Considering Proposition 1, this would guarantee a
deviation in RErr of at most 4.09% with probability at least 99%. As shown in Table 6.8, the
obtained RErr with 1Mio random bit error patterns does not deviate significantly from the
results with only 50 patterns. Only the standard deviation of RErr increases slightly.

Summary: Our experiments are summarized in Figure 6.9. We consider Normal (orange)
quantization vs. our robust quantization RQuant (red) as well as various Clipping and
RandBET models with different wmax and p during training (indicated in • gray), highlighting
the best model for each bit error rate in blue and violet, respectively. On all datasets RQuant
outperforms Normal. On CIFAR10 (left), RErr increases significantly for RQuant starting at
p ≈ 0.25% bit error rate. While Clipping generally reduces RErr, only RandBET can keep RErr
around 6% or lower for a bit error rate of p ≈ 0.5%. CIFAR100 is generally more difficult, while
significantly higher bit error rates are possible on MNIST. On CIFAR10, RErr increases slightly
for m = 4. However, RErr for m = 3, 2 increases more significantly as clean Err increases by
1 − 2%. Nevertheless, RErr only increases slightly for larger bit error rates p. In all cases, RErr
increases monotonically, ensuring safe operation at higher voltages. The best trade-off depends
on the application: higher energy savings require a larger “sacrifice” in terms of RErr.
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Figure 6.9: Bit Error Robustness on CIFAR10, CIFAR100 and MNIST: Average RErr plotted
against bit error rate p, both in %. We considered various models (in • gray), corresponding to
different wmax and p during training. We explicitly plot the best model for each bit error rate:
for Normal (orange), RQuant (red), Clipping (blue) and RandBET (violet). Note that these
might correspond to different wmax and p (also across datasets). Across all approaches, we plot
the per-error-rate best model in black: for m = 8, 4, 3, 2 bits, depending on dataset. For 8 bit
and low bit error rates, Clipping is often sufficient. However, for 4 bit or higher bit error rates,
RandBET is crucial to keep RErr low.

6.4.7 Robustness to Bit Errors in Inputs and Activations

While RandBET successfully improves robustness against low-voltage induced bit errors in
the weights, both inputs and activations might also be subject to random bit errors when
(temporarily) stored on the SRAM scratchpad. Thus, we also consider injecting bit errors in
inputs and activations, making first steps towards a “fully” robust deep neural network. First,
we take a closer look at the impact of bit errors in inputs and activations. Then, we adapt
RandBET to improve robustness. For clarity, in text and Table 6.9, we use pw, pi and pa to
denote the bit error rate in weights, inputs and activations, respectively. We further color-code
bit errors in inputs as orange and activations as violet.

Bit Error Model in Inputs and Activations: Following our description in Section 6.2.1, we
inject bit errors in both inputs and activations. Inputs are quantized using m = 8 bit with
[qmin, qmax] = [0, 1] using asymmetric quantization into unsigned integers. Note that this does
not introduce errors as images are typically provided in 8 bit quantization per channel (i.e.,
256 distinct values per channel). Activations are also quantized using m = 8 bit using our
robust fixed-point quantization scheme. Note that we do not employ any advanced activation
quantization schemes such as activation clipping [CWV+18]. Bit errors are injected once into
inputs before being fed into the model and once into the activations after each block consisting
of convolutional layer, normalization layer (i.e., GN) and ReLU activation. In our SimpleNet,
there are 13 such blocks on CIFAR10. This assumes that activations after each such block are
temporally stored on SRAM scratchpads. While the actual data flow is highly specific to both
chip and deep neural network architecture, this is a realistic assumption. As with bit errors in
the weights, we evaluate using 50 random bit error patterns and make sure that for rate p′ ≤ p
the bit errors introduced in inputs/activations are a subset of those for rate p. As we assume
activations after different blocks to be stored on separate parts of the memory, the bit errors
are uncorrelated across activations.

Input and Activation Bit Error Robustness: Bit errors have severe impact on accuracy not
only when occurring in weights but also in inputs and activations. Table 6.9 shows robustness,
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Model (CIFAR10)
bit errors

in weights
bit errors
in inputs

bit errors
in act.

wmax=0.25, m=8 bit
weight/input/act. quantization

Err
in %

RErr in % RErr in % Err in %
(act. quant.)

RErr in %

bit errors in weights/inp./act., p in % p=0.1 p=1 p=0.1 p=0.5 p=0.1 p=0.5

PLClipping 4.96 5.39 7.04 10.80 22.80 5.16 7.38 21.58
PLClipping0.1 5.62 5.91 6.65 12.80 26.50 5.84 8.72 27.36
PLRandBET, pw=0.1 4.49 4.98 6.65 11.00 22.80 4.71 7.25 24.94
PLRandBET, pw=1 4.62 5.02 6.36 11.30 22.40 4.83 6.92 19.83
PLRandBET, pw=1, pi=0.1 5.50 5.99 7.49 7.70 9.10 5.71 8.37 25.83
PLRandBET, pw=1, pi=0.1, pa=0.1 9.16 9.60 11.09 11.50 13.80 9.31 10.54 13.51
PLRandBET, pa=0.5 5.43 5.91 7.96 10.90 21.90 5.68 6.74 10.16
PLRandBET, pw=1, pa=0.1 7.66 8.27 10.47 13.80 24.70 7.89 9.09 12.17

Table 6.9: Bit Errors in Inputs and Activations: Average RErr for PLClipping and PLRandBET
against bit errors in weights, inputs and activations. We use PLRandBET to inject bit errors in
weights (rate pw), inputs (rate pi, orange) and/or activations (rate pa, violet) during training.
Bit errors in inputs and activations are difficult to tolerate. Extreme Clipping (e.g., wmax) might
worsen robustness against bit errors in inputs/activations. PLRandBET against bit errors in
weights, inputs and activations is significantly harder, resulting in higher Err, while improving
robustness considerably.

i.e., average RErr, of various models on CIFAR10 against bit errors in weights, inputs (in
orange) or activations (in violet). For activation quantization, we additionally report the (clean)
Err after activation quantization (without bit errors). While being simplistic, our activation
quantization has negligible impact on Err. We found bit errors in inputs and activations to be
challenging in terms of robustness. Even for small bit error rates, e.g., p = 0.1%, RErr increases
significantly, to at least 7.7% and 6.92% RErr for inputs and activations, respectively. While
PLRandBET (training on random bit errors in weights) helps against bit errors in activations, it
has no impact on robustness against bit errors in inputs. Extreme PLClipping, in contrast, e.g.,
using wmax = 0.1 tends to reduce robustness in both cases. These results show that low-voltage
operation is complicated when taking inputs and activations into account. While separate
SRAM arrays for weights, inputs and activations can be used, allowing varying levels of bit
errors, this is potentially undesirable from a design perspective.

RandBET for Inputs and Activations: In order to obtain robustness against random bit errors
in inputs and/or activations, we adapt RandBET to allow bit error injection in inputs and/or
activations (in addition to weights) during training. Table 6.9 shows that injecting either input
bit errors (bit error rate pi in orange) or activation bit errors (bit error rate pa in violet) helps
robustness, but also makes training significantly more difficult. Indeed, injecting bit errors
in weights, inputs and activations increases (clean) Err significantly, to 9.16% from 4.62% (for
RandBET with bit errors in weights only). We found that this difficulty mainly stems from
injecting bit errors in activations during training: While RandBET (activations only) with
pa=0.5% affects (clean) Err only slightly (5.43%), bit errors in weights and activations (i.e.,
pw=1% and pa=0.1%) results in an increase to 7.66%. This increase in Err also translates to
an increase in RErr against bit errors in weights or activations. As a result, injecting bit errors
only in weights and inputs (e.g., pw=1% and pi = 0.1%) might be beneficial as it avoids a
significant increase in (clean) Err, while still providing some robustness against bit errors in
activations. Overall, we made a significant step towards deep neural networks “fully” robust
against low-voltage induced random bit errors, but the problem remains difficult.
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Model / Dataset RErr in % for ϵ Bit Errors

MNIST ϵ=80 ϵ=160 ϵ=240 ϵ=320
RQuant 77.88 90.11 89.94 90.04
Clipping0.05 10.11 11.22 89.18 57.28
AdvBET0.05 0.42 10.08 10.13 20.09
CIFAR10 ϵ=160 ϵ=320 ϵ=640 ϵ=960
RQuant BN 89.30 89.26 89.56 89.32
RQuant (GN) 34.42 89.01 90.10 90.02
Clipping0.05 BN 89.48 89.16 89.19 89.40
Clipping0.05 (GN) 14.84 24.96 49.56 51.88
AdvBET0.05 (GN) 13.72 15.53 25.91 44.47

Model / Dataset

MNIST ϵBFA
RQuant 98 ± 7.5
Clipping0.05 437 ± 49.7
AdvBET0.05 1403 ± 263.3

CIFAR10 ϵBFA
RQuant BN 54 ± 8.5
RQuant GN 385 ± 33.9
Clipping0.05 BN 213 ± 20.9
Clipping0.05 GN 1725 ± 60.8
AdvBET0.05 2187 ± 11.2

Table 6.10: Left: Bit Flip Attack (BFA) [RHF19a]. Worst RErr for RQuant, Clipping and
AdvBET against BFA for various allowed budgets ϵ of bit errors. On CIFAR10, we also present
results when using batch normalization (BN). Surprisingly, Clipping is quite successful in
“defending” BFA as long as BN is avoided, even for very large ϵ. Right: Required Bit Flips for
BFA. We report the average number (and standard deviation) of performed bit flips ϵBFA to
increase RErr to 90% or above. Note that this setting is different from the results left, where
ϵBFA is limited explicitly. AdvBET was trained using ϵ = 160 during training.

6.4.8 Robustness Against Adversarial Bit Errors

In this section, we switch focus and consider adversarial bit error robustness. To this end, we
consider both the BFA attack from related work [RHF19a] and our own adversarial bit error
attack from Section 6.2.2. As “defense”, we consider Clipping, RandBET and our adversarial
bit error training (AdvBET) which are able to improve robustness considerably – both against
BFA and our adversarial bit level attack.

Limitations of BFA: We start by considering BFA, showing that it is not as effective (and
efficient) against our models, compared to the results in [RHF19a]. Table 6.10 (left) reports worst
RErr on MNIST and CIFAR10 for various models. On MNIST, BFA is effective in attacking our
RQuant model, even for only ϵ=80 bit errors, increasing RErr to 77.88%. However, Clipping
seems to provide good inherent robustness, at least for low ϵ up to 160. The same holds on
CIFAR10. Here, we also show results considering batch normalization (BN, marked in red),
as used in [RHF19a]. Similar to RQuant, when training Clipping with BN, the deep neural
network is significantly less robust. In fact, BFA is suddenly able to increase RErr beyond 90%,
while RErr for Clipping with GN is still at 15.53% for ϵ=320. However, we found that BFA
does not attack the batch normalization parameters (i.e., scale and bias). Instead, as shown in
Table 6.3 against random bit errors, we found that BN is generally less robust.

Table 6.10 (right) also reports the average number of bit flips required by BFA in order to
increase RErr to 90% or above (i.e., reduce performance to random guessing, as also used in
[RHF19a]). Furthermore, we report the standard deviation across these 5 restarts. As shown,
BFA requires significantly more bit flips ϵBFA to break our models than reported in [RHF19a].
We believe that this is mainly due to [RHF19a] relying on BN as discussed above. Furthermore,
our Clipping, RandBET or AdvBET models, specifically trained to be robust against random
or adversarial bit errors, improve robustness significantly. On MNIST, more than 1k and on
CIFAR10 more than 2k bit flips are required.

Finally, Figure 6.10 shows RErr and loss over BFA iterations. While loss increases continu-
ously, RErr tends to increase roughly in steps of 10%. This is because BFA consecutively flips
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CIFAR10: BFA [RHF19a], T = 192 and ϵ = 5 · T = 960
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Figure 6.10: BFA Iterations: RErr and
loss (after bit errors, in red) plotted
against BFA iterations. RErr tends to
increase (roughly) in steps of ∼ 10% by
flipping predictions consecutively to a
constant one for each class.

Err % Worst RErr in %
U (all) T (all) log conv

MNIST ϵ=160
RQuant 0.37 0.48 0.51 91.08 85.42
Clipping0.05 0.38 2.30 0.74 10.77 85.09
AdvBET0.05, ϵ=240 0.29 11.58 0.34 0.36 0.46

CIFAR10 ϵ=320
RQuant 4.89 8.54 91.18 91.18 89.06
Clipping0.05 5.34 24.04 35.20 35.86 60.76
AdvBET0.05, ϵ=160 5.54 10.01 20.20 26.22 12.33

Table 6.11: Adversarial Bit Error Abla-
tion. Worst RErr, considering different
ϵ and settings on MNIST and CIFAR10:
attacking only the logit layer (i.e., last
layer), or only first convolutional layer,
using untargeted (“U”) or targeted
(“T”) attacks. Targeted attacks are usu-
ally easier to optimize and more effec-
tive. The first convolutional or logit
layer are particularly vulnerable.

the labels for each class to a constant class, eventually arriving at 90% RErr which is equivalent
to a random or constant classifier. However, BFA needs between 1 and 2 seconds per iteration
and the number of bit flips is (indirectly) tied to the number of iterations, which is also the
reason why loss increases monotonically in Figure 6.10. This makes BFA unfit to be used for
AdvBET. We address some of these limitations using our adversarial bit error attack.

More Effective Adversarial Bit Errors: Using appropriate hyperparameters and considering
both untargeted and targeted attacks, our adversarial bit error attack is more effective and
efficient compared to BFA. Table 6.11 shows (worst) RErr on MNIST and CIFAR10, showing
that our adversarial bit errors achieve higher RErr compared to BFA, e.g., for ϵ=320. As
also reported in [RHL+20], we found that targeted attacks are generally more effective. This
is because the “easiest” way to increase RErr is to force the neural network to predict a
constant label, which the targeted attacks explicitly do. Similarly, targeting only the logit layer
is usually sufficient for high RErr. Interestingly, attacking only the first convolutional layer
is quite effective, as well. We also emphasize that we are considering more adversarial bit
errors (i.e., larger ϵ) on CIFAR10, even though CIFAR10 is considerably more difficult. This
is due to the increased number of weights (roughly 5.5Mio) on CIFAR10. Figure 6.11 also
shows that gradient normalization and momentum are essential for the untargeted attack to
be successful. This is important as running the targeted attack for each target label during
AdvBET is prohibitively expensive. Nevertheless, the attack remains sensitive to, e.g., the
learning rate, but γ=1 works reasonably well across models, given enough random restarts
to avoid poor optima. Thus, in our evaluation, we run both targeted and untargeted attacks,
attacking all weights, only the first convolutional and/or logit layer and consider the worst-case
across a total of 80 random restarts. Overall, our attack provides a much more realistic estimate
of adversarial bit error robustness. Furthermore, on CIFAR10, our attack requires only between
0.15 and 0.2 seconds per iteration and runtime is independent of ϵ.

Clipping and RandBET Improve Adversarial Bit Error Robustness: As shown for BFA in
Table 6.10, we find that Clipping and RandBET are surprisingly robust against adversarial bit
errors. Similarly, Table 6.12 reports RErr on MNIST and CIFAR10 against our adversarial bit
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CIFAR10: Adversarial Bit Errors on Clipping0.05, ϵ=640
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Figure 6.11: Adversarial Bit Error Iterations: We plot loss, c.f. Equation (6.1), and robust error
RErr against iterations, both measured on the 100 held-out test examples used to find, i.e., train,
adversarial bit errors. Clearly, L∞ gradient normalization with momentum (in red), targeting
first convolutional (yellow) or logit layer (violet), is most effective for untargeted attacks.
Unfortunately, the attack gets easily stuck in bad optima if learning rate is not optimal.
Targeted attacks simplify optimization and are often more effective (black, right).

Err % RErr in %

MNIST ϵ=160 ϵ=240 ϵ=320
RQuant 0.37 91.08 91.08 91.08
Clipping0.05 0.38 88.81 90.11 90.26
RandBET0.05, p=20 0.39 69.90 81.16 81.94
AdvBET0.05, ϵ=160 0.31 21.43 40.30 80.10
AdvBET0.05, ϵ=240 0.31 28.34 41.66 71.16

CIFAR10 ϵ=320 ϵ=480 ϵ=640
RQuant 4.89 91.18 91.18 91.18
Clipping0.05 5.34 60.76 79.12 83.93
RandBET0.05, p=2 5.42 33.86 54.24 80.36
AdvBET0.05, ϵ=160 5.54 26.22 55.06 77.43

Table 6.12: Adversarial Bit Error Ro-
bustness and AdvBET: Worst RErr
against adversarial bit errors for Clip-
ping, RandBET and AdvBET consid-
ering multiple restarts, including tar-
geted and untargeted attacks. While Ad-
vBET improves robustness considerably
on MNIST, Clipping and RandBET are
very strong baselines on CIFAR10. As
we consider larger ϵ, this makes it hard
for AdvBET to further improve results.

error attack. While Clipping does not perform well on MNIST, RandBET reduces RErr against
ϵ=80 from 85.09% to 10.13%. On CIFAR10, in contrast, considering larger ϵ, Clipping alone is
quite effective, with 20.48% RErr against ϵ=160. Nevertheless, RandBET further improves over
Clipping. This is counter-intuitive considering, e.g., robustness against adversarial examples
where training against random perturbations does generally not provide adversarial robustness.
However, RandBET is trained against large bit error rates, e.g., p=2% on CIFAR10, with an
expected ϵ=8·W≈880k bit errors, 110k in the most significant bits (MSBs). For adversarial bit
error, in contrast, we consider up to ϵ=640 on CIFAR10. In terms of BFA, complementing
the results in Table 6.10, we need on average 2253 bit errors to increase RErr above 90%
for RandBET on CIFAR10. In contrast, [HRL+20] report 541 required bit flips (ResNet-20,
W≈4.3Mio) to “break” their proposed binarized deep neural network, which has been reduced
to 35 in [RHL+20] using targeted BFA. Overall, these results show that random and adversarial
bit error robustness are aligned well, allowing to secure low-voltage operation of accelerators.

AdvBET Improves Adversarial Bit Error Robustness: Using AdvBET, we can further
boost robustness against adversarial bit errors, c.f. Table 6.12. On MNIST, in particular,
AdvBET is able to reduce RErr from above 80% for RandBET or Clipping, to 40.30% against
up to ϵ=240 adversarial bit errors. As Table 6.11 illustrates, targeted attacks are generally
considered stronger. Thus, training with a targeted attack, selecting a random target label in
each iteration, further boosts robustness to 31.23% RErr. However, these improvements do
not easily generalize to CIFAR10. We suspect this is due to two reasons: First, we found that
training with too large ϵ is difficult (also c.f. increased Err in Table 6.12), i.e., AdvBET with
larger ϵ does not improve robustness because training becomes too hard. This is why we
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report results for AdvBET trained on ϵ=160. Second, Clipping alone is significantly more
robust on CIFAR10 than on MNIST, resulting in a particularly strong baseline. We suspect
that architectural differences have a significant impact on how effective Clipping is against
adversarial bit errors. For example, models on CIFAR10 have inherently more weights in the
first convolutional layer (relative to W, due to larger input dimensionality,) which Table 6.11
shows to be particularly vulnerable. Overall, AdvBET can be used to further boost robustness
against adversarial bit errors, beyond Clipping.

6.5 Conclusion

We proposed a combination of robust quantization, weight clipping and random bit error
training (RandBET) or adversarial bit error training (AdvBET) to train deep neural networks
robust against random and adversarial bit errors in their (quantized) weights. This enables
secure low-voltage operation of accelerators. Specifically, we considered robustness against
random bit errors induced by operating the accelerator memory far below its rated voltage
[CSC+19]. We showed that quantization details have tremendous impact on robustness, even
though we use a very simple fixed-point quantization scheme without any outlier treatment
[ZST+18, SSH15, PKY18]. By encouraging redundancy in the weights, clipping is another
simple but effective strategy to improve robustness. In contrast to related work, RandBET does
not require expert knowledge or profiling infrastructure [KHM+18a, KOY+19] and generalizes
across chips, with different bit error patterns, and voltages. As a result, we also avoid
expensive circuit techniques [RWA+16, CSC+19]. Furthermore, in contrast to existing research,
we discussed low-voltage induced random bit errors in inputs and activations. Finally, we
introduced a novel adversarial bit error attack that is more effective and efficient compared
to existing attacks [RHF19a] and can be utilized for AdvBET. Surprisingly, we found that
Clipping and RandBET also improve robustness against adversarial bit errors. However,
AdvBET further improves robustness specifically against adversarial bit errors. Altogether,
by improving deep neural network robustness against random and adversarial bit errors, we
enable both energy-efficient and secure accelerators.
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I m p r ov i n g A d v e r s a r i a l R o b u s t n e s s

a n d U n c e r ta i n t y E s t i m at i o n

While the previous parts focused on understanding and improving
robustness with respect to both input and weight perturbations, this
part shifts emphasis to uncertainty estimation. In the context of
adversarial robustness, reliable uncertainty quantification helps to
generalize robustness to different types of adversarial examples as
well as corrupted or out-of-distribution examples. Besides robustness,
appropriately estimating uncertainty also allows us to provide statis-
tical guarantees on model performance.
Specifically, in Chapter 7, we frame adversarial training in the larger
context of uncertainty estimation. In confidence-calibrated adversarial
training, instead of requiring high-confidence and correct classifi-
cation of adversarial examples, we want the model to reduce its
confidence, i.e., signal its uncertainty. By rejecting examples with
low confidence at test time, we can generalize adversarial robustness
to previously unseen types of adversarial examples as well as cor-
rupted or out-of-distribution examples. Besides, this also improves
the robustness-accuracy trade-off discussed in Part II.
Then, in Chapter 8, taking a step back from adversarial robustness,
we quantify uncertainty not by a (scalar) confidence but by predicting
confidence sets. Specifically, conformal prediction provides a statisti-
cal guarantee of the true label being included in the confidence set
with user-specified probability. However, conformal prediction is
generally applied post-training and not integrated well into today’s
deep learning methods. Thus, with conformal training, we present a
novel procedure for training deep neural networks and conformal
wrappers end-to-end. This not only reduces uncertainty, but also
allows shaping the obtained confidence sets while preserving the
original guarantee.
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This chapter poses adversarial robustness in the context of uncertainty estimation. Based
on Chapter 4, we expect adversarial examples to leave the data manifold and thus
encourage the model to reflect this by reducing the predicted confidence. This way,

we aim to address a major limitation of adversarial training: While adversarial training is
known to yield robust models against a specific threat model, e.g., L∞ adversarial examples,
robustness does typically not generalize to previously unseen threat models such as other Lp
norms, or larger perturbations. Our confidence-calibrated adversarial training (CCAT) tackles
this problem by biasing the model towards low confidence predictions on adversarial examples.
By allowing to reject examples with low confidence, robustness generalizes beyond the threat
model employed during training. CCAT, trained only on L∞ adversarial examples, increases
robustness against larger L∞, L2, L1 and L0 attacks, adversarial frames, distal adversarial
examples and corrupted examples and yields better clean accuracy compared to adversarial
training. For thorough evaluation we developed novel white- and black-box attacks directly
attacking CCAT by maximizing confidence. For each threat model, we use 7 attacks with
up to 50 restarts and 5000 iterations and report worst-case robust test error, extended to our
confidence-thresholded setting, across all attacks.

This chapter is based on [SHS20]: As first author, David Stutz conducted all experiments
and was the main writer of the paper. Proposition 2 in Section 7.2.2 and its proof, however, were
contributed by Matthias Hein. This work was presented at the Workshop on Uncertainty and
Robustness in Deep Learning (UDL) of ICML 2020 and as part of the Qualcomm Innovation
Fellowship Europe 2019. This work was also presented during invited talks at the Bosch Center
for Artificial Intelligence and the Qian Xuesen Laboratory of Space Technology.

Code: The source for this chapter can be found on GitHub1.
1https://github.com/davidstutz/icml2020-confidence-calibrated-adversarial-training
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Figure 7.1: Adversarial Training (AT) versus
our CCAT: We plot the confidence in the di-
rection of an adversarial example. AT enforces
high confidence predictions for the correct
class on the L∞-ball of radius ϵ (“seen” attack
during training, top left). As AT enforces no
particular bias beyond the ϵ-ball, adversarial
examples can be found right beyond this ball.
In contrast CCAT enforces a decaying confi-
dence in the correct class up to uniform con-
fidence within the ϵ-ball (top right). Thus,
CCAT biases the model to extrapolate uniform
confidence beyond the ϵ-ball. This behavior
also extends to “unseen” attacks during train-
ing, e.g., L2 attacks (bottom), such that adver-
sarial examples can be rejected via confidence-
thresholding.

7.1 Introduction

Deep neural networks were shown to be susceptible to adversarial examples [SZS+14]: adver-
sarially perturbed examples that cause misclassification while being nearly “imperceptible”,
i.e., close to the original example. Here, “closeness” is commonly enforced by constraining
the Lp norm of the perturbation, referred to as threat model. Since then, numerous defenses
against adversarial examples have been proposed. However, many were unable to keep up
with more advanced attacks [ACW18, AC18]. Moreover, most defenses are tailored to only one
specific threat model.

Adversarial training [GSS15, MMS+18], i.e., training on adversarial examples, can be re-
garded as state-of-the-art. However, following Figure 7.1, adversarial training is known to
“overfit” to the threat model “seen” during training, e.g., L∞ adversarial examples. Thus,
robustness does not extrapolate to larger L∞ perturbations, c.f. Figure 7.1 (top left), or
generalize to “unseen” attacks, c.f. Figure 7.1 (bottom left), e.g., other Lp threat models
[SC18, TB19, LCWC19, KSH+19, MWK20]. We hypothesize this to be a result of enforcing
high-confidence predictions on adversarial examples. However, high-confidence predictions
are difficult to extrapolate beyond the adversarial examples seen during training. More-
over, it is not meaningful to extrapolate high-confidence predictions to arbitrary regions.
Finally, adversarial training often hurts accuracy, resulting in a robustness-accuracy trade-off
[TSE+19, SHS19, RXY+19, ZYJ+19].

Contributions: We propose confidence-calibrated adversarial training (CCAT) which trains
the network to predict a convex combination of uniform and (correct) one-hot distribution
on adversarial examples that becomes more uniform as the distance to the attacked example
increases. This is illustrated in Figure 7.1. Thus, CCAT implicitly biases the network to predict
a uniform distribution beyond the threat model seen during training, c.f. Figure 7.1 (top right).
Robustness is obtained by rejecting low-confidence (adversarial) examples through confidence-
thresholding. As a result, having seen only L∞ adversarial examples during training, CCAT
improves robustness against previously unseen attacks, c.f. Figure 7.1 (bottom right), e.g., L2, L1
and L0 adversarial examples or larger L∞ perturbations. Furthermore, robustness extends to
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adversarial frames [ZZRP19], distal adversarial examples [HAB19], corrupted examples (e.g.,
noise, blur, transforms etc.) and accuracy of normal training is preserved better than with
adversarial training.

For thorough evaluation, following best practices [CAB+19], we adapt several state-of-
the-art white- and black-box attacks [NK17, IEAL18, KH18, ACFH20] to CCAT by explicitly
maximizing confidence and improving optimization through a backtracking scheme. In total,
we consider 7 different attacks for each threat model (i.e., Lp for p ∈ {∞, 2, 1, 0}), allowing up
to 50 random restarts and 5000 iterations each. We report worst-case robust test error, extended
to our confidence-thresholded setting, across all attacks and restarts, on a per test example
basis. We demonstrate improved robustness against unseen attacks compared to standard
adversarial training [MMS+18], TRADES [ZYJ+19], adversarial training using multiple threat
models [MWK20] and two detection methods [MLW+18, LLLS18b], while training only on L∞
adversarial examples.

7.2 Confidence Calibration of Adversarial Examples

To start, we briefly review adversarial training on L∞ adversarial examples [MMS+18], which
has become standard to train robust models (Section 7.2.1). However, robustness does not
generalize to larger perturbations or unseen attacks. We hypothesize this to be the result of
enforcing high-confidence predictions on adversarial examples. CCAT addresses this issue
with minimal modifications (Section 7.2.2 and Algorithm 3) by encouraging low-confidence
predictions on adversarial examples. During testing, adversarial examples can be rejected by
confidence thresholding.

Notation: We consider a classifier f : Rd → RK with K classes where fk denotes the confidence
for class k. While we use the cross-entropy loss L for training, our approach also generalizes to
other losses. Given x ∈ Rd with class y∈ {1, . . . , K}, we let f (x) := arg maxk fk(x) denote the
predicted class for notational convenience. For f (x) = y, an adversarial example x̃ = x + δ is
defined as a “small” perturbation δ such that f (x̃) ̸= y, i.e., the classifier changes its decision.
The strength of the change δ is measured by some Lp-norm, p ∈ {0, 1, 2, ∞}. Here, p = ∞ is a
popular choice as it leads to the smallest perturbation per pixel.

7.2.1 Problems of Adversarial Training

Following [MMS+18], adversarial training is given as the following min-max problem:

min
w

E

[
max
∥δ∥∞≤ϵ

L( f (x + δ; w), y)
]

(7.1)

with w being the classifier’s parameters. During mini-batch training the inner maximization
problem,

max
∥δ∥∞≤ϵ

L( f (x + δ; w), y), (7.2)

is approximately solved. In addition to the L∞-constraint, a box constraint is enforced for
images, i.e., x̃i = (x + δ)i ∈ [0, 1]. Note that maximizing the cross-entropy loss is equivalent to
finding the adversarial example with minimal confidence in the true class. For neural networks,
this is generally a non-convex optimization problem. In [MMS+18] the problem is tackled
using projected gradient descent (PGD), initialized using a random δ with ∥δ∥∞ ≤ ϵ.
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Figure 7.2: Extrapolation of Uniform Predictions: We plot the confidence in each class
along an interpolation between two test examples x and x′, “2” and “7”, on MNIST [LBBH98]:
(1− κ)x + κx′ where κ is the interpolation factor. CCAT quickly yields low-confidence, uniform
predictions in between both examples, extrapolating the behavior enforced within the ϵ-ball
during training. Regular adversarial training, in contrast, consistently produces high-confidence
predictions, even on unreasonable inputs.

In contrast to adversarial training as proposed in [MMS+18], which computes adversarial
examples for the full batch in each iteration, others compute adversarial examples only for half
the examples of each batch [SZS+14]. Instead of training only on adversarial examples, each
batch is divided into 50% clean and 50% adversarial examples. Compared to Equation (7.1),
50%/50% adversarial training effectively minimizes

E
[

max
∥δ∥∞≤ϵ

L( f (x + δ; w), y)
]

︸ ︷︷ ︸
50% adversarial training

+E
[
L( f (x; w), y)

]︸ ︷︷ ︸
50% “clean” training

. (7.3)

This improves test accuracy on clean examples compared to 100% adversarial training but
typically leads to worse robustness. Intuitively, by balancing both terms in Equation (7.3), the
trade-off between accuracy and robustness can already be optimized to some extent [SHS19].

Problems: Trained on L∞ adversarial examples, the robustness of adversarial training does not
generalize to previously unseen adversarial examples, including larger perturbations or other
Lp adversarial examples. We hypothesize that this is because adversarial training explicitly
enforces high-confidence predictions on L∞ adversarial examples within the ϵ-ball seen during
training (“seen” in Figure 7.1). However, this behavior is difficult to extrapolate to arbitrary
regions in a meaningful way. Thus, it is not surprising that adversarial examples can often
be found right beyond the ϵ-ball used during training, c.f. Figure 7.1 (top left). This can be
described as “overfitting” to the L∞ adversarial examples used during training. Also, larger
ϵ-balls around training examples might include (clean) examples from other classes. Then,
Equation (7.2) will focus on these regions and reduce accuracy as considered in our theoretical
toy example, see Proposition 2, and related work [JBZB19, JBC+19].

As suggested in Figure 7.1, both problems can be addressed by enforcing low-confidence
predictions on adversarial examples in the ϵ-ball. In practice, we found that the low-confidence
predictions on adversarial examples within the ϵ-ball are extrapolated beyond the ϵ-ball, i.e.,
to larger perturbations, unseen attacks or distal adversarial examples. This allows rejecting
adversarial examples based on their low confidence. We further enforce this behavior by
explicitly encouraging a “steep” transition from high-confidence predictions (on clean examples)
to low-confidence predictions (on adversarial examples). As a result, the (low-confidence)
prediction is almost flat close to the boundary of the ϵ-ball. Additionally, there is no incentive
to deviate from the uniform distribution outside the ϵ-ball. For example, as illustrated in
Figure 7.2, the confidence stays low in between examples from different classes and only
increases if necessary, i.e., close to the examples.
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Algorithm 3 Confidence-Calibrated Adversarial Training (CCAT): The only changes compared
to standard adversarial training are the attack and the probability distribution over the classes,
which becomes more uniform as distance ∥δ∥∞ increases. During testing, low-confidence
(adversarial) examples are rejected.

1: while true do
2: choose random batch (x1, y1), . . . , (xB, yB).
3: for b = 1, . . . , B/2 do
4: δb := arg max∥δ∥∞≤ϵ maxk ̸=yb fk(xb+δ) (Equation (7.4))
5: x̃b := xb + δb
6: λ(δb) := (1 − min(1, ∥δb∥∞/ϵ))ρ (Equation (7.6))
7: ỹb := λ(δb) one_hot(yb) + (1− λ(δb))

1
K (Equation (7.5))

8: end for
9: update parameters using Equation (7.3): ∑

B/2
b=1 L( f (x̃b), ỹb) + ∑B

b=B/2 L( f (xb), yb)
10: end while

7.2.2 Confidence-Calibrated Adversarial Training

Confidence-calibrated adversarial training (CCAT) addresses these problems with minimal
modifications, as outlined in Algorithm 3. During training, we train the network to predict
a convex combination of (correct) one-hot distribution on clean examples and uniform distri-
bution on adversarial examples as target distribution within the cross-entropy loss. During
testing, adversarial examples can be rejected by confidence thresholding: adversarial examples
receive near-uniform confidence while test examples receive high-confidence. By extrapolating
the uniform distribution beyond the ϵ-ball used during training, previously unseen adversarial
examples such as larger L∞ perturbations can be rejected, as well. In the following, we first
introduce an alternative objective for generating adversarial examples. Then, we specifically
define the target distribution, which becomes more uniform with larger perturbations ∥δ∥∞.

Given an example x with label y, our adaptive attack during training maximizes the
confidence in any other label k ̸= y. This results in effective attacks against CCAT, as CCAT
will reject low-confidence adversarial examples:

max
∥δ∥∞≤ϵ

max
k ̸=y

fk(x + δ; w) (7.4)

Note that Equation (7.2), in contrast, minimizes the confidence in the true label y. Similarly,
[GQB19] uses targeted attacks in order to maximize confidence, whereas ours is untargeted
and thus our objective is the maximal confidence over all other classes.

Then, given an adversarial example from Equation (7.4) during training, CCAT uses the
following combination of uniform and one-hot distribution as target for the cross-entropy loss:

ỹ = λ(δ) one_hot(y) +
(
1 − λ(δ)

) 1
K

(7.5)

with λ(δ) ∈ [0, 1] and one_hot(y) ∈ {0, 1}K denoting the one-hot vector corresponding to
class y. Thus, we enforce a convex combination of the original label distribution and the
uniform distribution which is controlled by the parameter λ = λ(δ), computed given the
perturbation δ. We choose λ to decrease with the distance ∥δ∥∞ of the adversarial example
to the attacked example x with the intention to enforce uniform predictions when ∥δ∥∞ = ϵ.
Then, the network is encouraged to extrapolate this uniform distribution beyond the used
ϵ-ball. Even if extrapolation does not work perfectly, the uniform distribution is much more
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meaningful for extrapolation to arbitrary regions as well as regions between classes compared to
high-confidence predictions as encouraged in standard adversarial training and demonstrated
in Figure 7.2. For controlling the trade-off λ between one-hot and uniform distribution, we
consider the following “power transition”:

λ(δ) :=
(

1 − min
(

1,
∥δ∥∞

ϵ

))ρ
(7.6)

This ensures that for δ = 0 we impose the original one-hot label. For growing δ, however, the
influence of the original label decays proportional to ∥δ∥∞. The speed of decay is controlled by
the parameter ρ. For ρ = 10, Figure 7.1 (top right) shows how the transition is approximated
by the network. The power transition ensures that for ∥δ∥∞ ≥ ϵ, i.e., perturbations larger than
encountered during training, a uniform distribution is enforced as λ is 0. We train on 50%
clean and 50% adversarial examples in each batch, as in Equation (7.3), such that the network
has an incentive to predict correct labels.

The convex combination of uniform and one-hot distribution in Equation (7.5) resembles
the label smoothing regularizer introduced in [SVI+16]. In concurrent work, label smoothing
has also been used as regularizer for adversarial training [CLC+20]. However, in our case,
λ = λ(δ) from Equation (7.6) is not a fixed hyperparameter as in [SVI+16, CLC+20]. Instead,
λ depends on the perturbation δ and reaches zero for ∥δ∥∞ = ϵ to encourage low-confidence
predictions beyond the ϵ-ball used during training. Thereby, λ explicitly models the transition
from one-hot to uniform distribution.

Confidence-Calibrated Adversarial Training Yields Accurate Models: Proposition 2 analyzes
100% adversarial training and its 50%/50% variant as well as our confidence-calibrated variant,
CCAT, to show that there exist problems where both 100% and 50%/50% adversarial training
are unable to reconcile robustness and accuracy, as recently discussed [TSE+19, SHS19, RXY+19,
ZYJ+19]. However, our CCAT is able to obtain both robustness and accuracy given that λ in
Equation (7.6) is chosen appropriately:
Proposition 2. We consider a classification problem with two points x = 0 and x = ϵ in
R with deterministic labels, i.e., p(y = 2|x = 0) = 1 and p(y = 1|x = ϵ) = 1, such that
the problem is fully determined by the probability p0 = p(x = 0). The Bayes error of
this classification problem is zero. Let the predicted probability distribution over classes be
p̃(y|x) = egy(x)/eg1(x)+eg2(x), where g : Rd → R2 is the classifier, and we assume that the function
λ : R+ → [0, 1] used in CCAT is monotonically decreasing and λ(0) = 1. Then, the error of the
Bayes optimal classifier (with cross-entropy loss) for

• adversarial training on 100% adversarial examples is min{p0, 1 − p0}.

• adversarial training on 50%/50% adversarial/clean examples per batch is min{p0, 1− p0}.

• CCAT on 50% clean and 50% adversarial examples is zero if λ(ϵ) < min {p0/1−p0, 1−p0/p0}.

Proof. First, we stress that we are dealing with three different probability distributions over the labels:
the true one p(y|x), the imposed one during training p̂(y|x) and the predicted one p̃(y|x). We also note
that p̂ depends on λ as follows:

p̂(k) = λpy(k) + (1 − λ)u(k)

where py(k) is the original one-hot distribution, i.e., py(k) = 1 iff k = y and py(k) = 0 otherwise with y
being the true label, and u(k) = 1/K is the uniform distribution. We note that this is merely an alternative
formulation to the target distribution of Equation (7.5). Also note that λ itself is a function of the norm
∥δ∥; here, this dependence is made explicit by writing p̂(λ)(y|x). This makes the expressions for the
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expected loss of CCAT slightly more complicated. Thus, we first derive the Bayes optimal classifier and
its loss for CCAT. To this end, we introduce

a = g1(0)− g2(0), b = g1(ϵ)− g2(ϵ) (7.7)

and express the logarithm of the predicted probabilities (i.e., the confidences) of classes 1 and 2 in terms
of a and b:

− log p̃(y = 2|x = x) = − log
( eg2(x)

eg1(x) + eg2(x)

)
= log

(
1 + eg1(x)−g2(x)) = {log

(
1 + ea) if x = 0

log(1 + eb) if x = ϵ
,

− log p̃(y = 1|x = x) = − log
( eg1(x)

eg1(x) + eg2(x)

)
= log

(
1 + eg2(x)−g1(x)) = {log(1 + e−a) if x = 0

log
(
1 + e−b) if x = ϵ

.

Next, We consider the approach of [MMS+18] with 100% adversarial training. The expected loss
can be written as

E
[

max∥δ∥∞≤ϵ L(g(x + δ), y)
]
= E

[
E
[

max∥δ∥∞≤ϵ L(g(x + δ), y)|x
]]

=p(x = 0)p(y = 2|x = 0)max
{
− log

(
p̃(y = 2|x = 0)

)
,− log

(
p̃(y = 2|x = ϵ)

)}
+ (1 − p(x = 0))p(y = 1|x = ϵ)max

{
− log

(
p̃(y = 1|x = 0)

)
,− log

(
p̃(y = 1|x = ϵ)

)}
=p(x = 0)max

{
− log

(
p̃(y = 2|x = 0)

)
,− log

(
p̃(y = 2|x = ϵ)

)}
+ (1 − p(x = 0))max

{
− log

(
p̃(y = 1|x = 0)

)
,− log

(
p̃(y = 1|x = ϵ)

}
In terms of a and b, this yields the expected loss (denoted L instead of L for clarity)

L(a, b) =max
{

log(1 + ea), log(1 + eb)
}

p0 + max
{

log(1 + e−a), log(1 + e−b)
}
(1 − p0).

This is minimized if a = b as then both maxima are minimal and yields:

L(a) = L(a, a) = log(1 + ea)p0 + log(1 + e−a)(1 − p0).

The critical point is attained at a∗ = b∗ = log
(

1−p0
p0

)
. Therefore,

a∗ = b∗ =

{
> 0 if p0 < 1

2
< 0 if p0 > 1

2
,

and we classify x = 0 and x = ϵ correctly if p0 > 1/2 and p0 < 1/2, respectively. As a result, the error of
100% adversarial training is given by min{p0, 1 − p0} whereas the Bayes optimal error is zero as the
problem is deterministic.

Next, we consider 50% adversarial and 50% clean training. Here, the expected loss

E
[

max∥δ∥∞≤ϵ L(g(x + δ), y)
]
+ E

[
L(g(x + δ), y)

]
,

can be written in terms of a and b as

L(a, b) =max
{

log(1 + ea), log(1 + eb)
}

p0 + max
{

log(1 + e−a), log(1 + e−b)
}
(1 − p0)

+ log(1 + ea)p0 + log(1 + e−b)(1 − p0).

We make the following case distinction. If a ≥ b, then the loss reduces to

L(a, b) = log(1 + ea)p0 + log(1 + e−b)(1 − p0) + log(1 + ea)p0 + log(1 + e−b)(1 − p0)

≥ L(a, a) = 2 log(1 + ea)p0 + 2 log(1 + e−a)(1 − p0).
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Solving for the critical point yields a∗ = b∗ = log
(
(1−p0)/p0

)
. Considering a ≤ b, we obtain the loss

L(a, b) = log(1 + eb)p0 + log(1 + e−a)(1 − p0) + log(1 + ea)p0 + log(1 + e−b)(1 − p0).

Again, solving for the critical point also yields a∗ = b∗ = log
(
(1−p0)/p0

)
. As this coincides with the

solution found for 100% adversarial training, the error is min{p0, 1 − p0} and not equal to the Bayes
optimal error.

For our confidence-calibrated adversarial training one first has to solve

δ∗x(j) = arg max
∥δ∥∞≤ϵ

max
k ̸=j

p̃(y = k | x + δ).

With a and b as defined above, and noting that we consider a binary classification problem with examples
x = 0 as well as x = ϵ and predicted probability distribution p̃, we get:

δ∗0 (1) = arg max
∥δ∥∞≤ϵ

p̃(y = 2|0 + δ) =

{
0 a < b
ϵ else

δ∗0 (2) = arg max
∥δ∥∞≤ϵ

p̃(y = 1|0 + δ) =

{
ϵ a < b
0 else

,

δ∗ϵ (1) = arg max
∥δ∥∞≤ϵ

p̃(y = 2|ϵ + δ) =

{
−ϵ a < b
0 else

δ∗ϵ (2) = arg max
∥δ∥∞≤ϵ

p̃(y = 1|ϵ + δ) =

{
0 a < b
−ϵ else

.

Note that the imposed distribution p̂ over classes depends on the true label y of x and the perturba-
tion δ∗x(y) through λ(δ∗x(y)). This is made explicit using the simplified notation p̂y(λ(δ∗x(y)))(x) :=
p̂(λ(δ∗x(y)))(y|x). Due to the simple structure of the problem, however, it holds that δ∗x(y) is either 0 or
ϵ (i.e., ∥δ∗x(y)∥∞ is also either 0 or ϵ). In CCAT we use the standard cross-entropy loss for 50% of the
batch, while the following loss is used for the other 50% :

L
(

p̃(x), p̂y
(
λ
(
δ∗x(y)

))
(x)
)
= −

2

∑
j=1

p̂y
(
λ
(
δ∗x(y)

))
(y = j | x = x) log

(
p̃
(
y = j | x = x + δ∗x(j)

))
.

Then, the corresponding expected loss is given by

E
[
L
(

p̃(x), p̂y
(
λ
(
δ∗x(y)

))
(x)
)]

= E
[

E
[
L
(

p̃(x), p̂y
(
λ
(
δ∗x(y)

))
(x)
)∣∣∣ x

]]
=p(x = 0)E

[
L
(

p̃(0), p̂y
(
λ
(
δ∗0 (y)

))
(0)
)∣∣∣ x = 0

]
+ p(x = ϵ)E

[
L
(

p̃(ϵ), p̂Y
(
λ
(
δ∗ϵ (y)

))
(ϵ)
)∣∣∣ x = ϵ

]
,

where p(x = 0) = p0 and p(x = ϵ) = 1 − p(x = 0) = 1 − p0. With the true conditional probabilities
p(y|x) we obtain

E
[
L
(

p̃(x), p̂y
(
λ(δ)

)
(x)
)∣∣∣ x

]
=

2

∑
s=1

p(y = s | x)L
(

p̃(x), p̂s
(
λ
(
δ∗x(s)

))
(x)
)

=−
2

∑
s=1

p(y = s | x)
2

∑
j=1

p̂s
(
λ
(
δ∗x(s)

))
(y = j | x) log

(
p̃(y = j | x = x + δ∗x(s))

)
For the considered problem, it holds p(y = 2 | x = 0) = p(y = 1 | x = ϵ) = 1 by assumption. Thus,

E
[
L
(

p̃(x), p̂y
(
λ(δ)

)
(x)
)∣∣∣x = 0

]
= −

2

∑
j=1

p̂2
(
λ
(
δ∗0 (2)

))
(y = j | x = 0) log

(
p̃(y = j | x = x + δ∗0 (2))

)
E
[
L
(

p̃(x), p̂y
(
λ(δ)

)
(x))

∣∣∣ x = ϵ
]
= −

2

∑
j=1

p̂1
(
λ
(
δ∗ϵ (1)

))
(y = j | x = ϵ) log

(
p̃(y = j | x = x + δ∗ϵ (1))

)
As ∥δ∗x(y)∥∞ is either 0 or ϵ and λ(0) = 1, we simplify notation by setting λ := λ(ϵ). Moreover, we note
that

p̂y(λ)(y = j|x = x) =

{
λ + (1−λ)

K if y = j
(1−λ)

K else
,
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where K is the number of classes, i.e., K = 2 in our case. With λ + (1−λ)/2 = (1+λ)/2, we can write the
total loss (i.e., cross-entropy loss with and without modified target distribution) of confidence-calibrated
adversarial training in terms of a and b as

L(a, b) =p0

[
log(1 + ea)1a≥b + 1a<b

( (1 + λ)

2
log(1 + eb) +

(1 − λ)

2
log(1 + e−b)

)]
+ (1 − p0)

[
log(1 + e−b)1a≥b + 1a<b

( (1 + λ)

2
log(1 + e−a) +

(1 − λ)

2
log(1 + ea)

)]
+ log(1 + ea)p0 + log(1 + e−b)(1 − p0),

where we have omitted a global factor 1/2 for better readability. Note that the last row corresponds to
the “clean” cross-entropy loss while the first two rows represent the adversarial part of the loss. As
suggested by the indicator function 1, we distinguish two cases a ≥ b and a < b. First, considering
a ≥ b, it is easy to see that in order to minimize the loss we get a = b:

∂aL = 2
ea

1 + ea p0 −
e−a

1 + e−a (1 − p0).

This yields ea = 1−p0
p0

or a = log
( 1−p0

p0

)
and the minimum for a ≥ b is attained on the boundary of the

domain. Second, for a ≤ b, we get

∂aL =
[ (1 + λ)

2
−e−a

1 + e−a +
(1 − λ)

2
ea

1 + ea

]
(1 − p0) + p0

ea

1 + ea ,

∂bL =
[ (1 + λ)

2
eb

1 + eb +
(1 − λ)

2
−eb

1 + e−b

]
p0 + (1 − p0)

−e−b

1 + e−b .

This yields the following critical points:

a∗ = log

(
1+λ

2 (1 − p0)

p0 +
1−λ

2 (1 − p0)

)
and b∗ = log

(
1−λ

2 p0 + (1 − p0)
1+λ

2 p0

)
.

It is straightforward to check that a∗ < b∗ for all 0 < p0 < 1. Indeed, we have

1+λ
2 (1 − p0)

p0 +
1−λ

2 (1 − p0)
=

1+λ
2 (1 − p0)

p0
1+λ

2 + 1−λ
2

=
1 − p0 − (1−λ)

2 (1 − p0)

p0
1+λ

2 + 1−λ
2

<
1−λ

2 p0 + (1 − p0)
1+λ

2 p0

if 0 < p0 < 1 and λ < 1 by assumption. We have a∗ < 0 with g2(0) > g1(0) (i.e., the Bayes optimal
decision for x = 0) and b∗ > 0 with g1(ϵ) > g2(ϵ) (i.e., Bayes optimal decision for x = ϵ) if

1 >
1 − p0

p0
λ and 1 >

p0

1 − p0
λ,

respectively. Overall, we recover the Bayes classifier if

λ < min
{1 − p0

p0
,

p0

1 − p0

}
.

Here, 100% and 50%/50% standard adversarial training are unable to obtain both robustness
and accuracy: The ϵ-ball used during training contains examples of different classes such
that adversarial training enforces high-confidence predictions in contradicting classes. CCAT
addresses this problem by encouraging low-confidence predictions on adversarial examples
within the ϵ-ball. Thus, CCAT is able to improve accuracy while preserving robustness.
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Figure 7.3: Confidence Histograms: On SVHN, for AT (50%/50% adversarial training) and
CCAT, we show confidence histograms corresponding to correctly classified test examples and
adversarial examples. We consider the worst-case adversarial examples across all L∞ attacks for
ϵ = 0.03. While the confidence of adversarial examples is reduced slightly for AT, CCAT is able
to distinguish the majority of adversarial examples from (clean) test examples by confidence
thresholding (in red).

7.3 Detection and Robustness Evaluation with Adaptive Attack

CCAT allows rejecting (adversarial) inputs by confidence-thresholding before classifying them,
see Figure 7.3. As we will see, this “reject option”, is also beneficial for standard adversarial
training (AT). Thus, evaluation also requires two stages: First, we fix the confidence threshold
at 99% true positive rate (TPR), where correctly classified clean examples are positives such
that at most 1% (correctly classified) clean examples are rejected. Second, on the non-rejected
examples, we evaluate accuracy and robustness using confidence-thresholded (robust) test error.

7.3.1 Adaptive Attack

As CCAT encourages low confidence on adversarial examples, we use PGD to maximize the
confidence of adversarial examples, c.f. Equation (7.4), as effective adaptive attack against CCAT.
In order to effectively optimize our objective, we introduce a simple but crucial improvement:
after each iteration, the computed update is only applied if the objective is improved; otherwise
the learning rate is reduced. Additionally, we use momentum [DLP+18] and run the attack for
exactly T iterations, choosing the perturbation corresponding to the best objective across all
iterations. In addition to random initialization, we found that δ = 0 is an effective initialization
against CCAT. We applied the same principles for [IEAL18], i.e., PGD with approximated
gradients, Equation (7.4) as objective, momentum and backtracking. We also use Equation (7.4)
as objective for the black-box attacks of [NK17, IEAL18, KH18, ACFH20].

7.3.2 Detection Evaluation

In the first stage, we consider a detection setting: adversarial example are negatives and
correctly classified clean examples are positives. The confidence threshold τ is chosen extremely
conservatively by requiring a 99% true positive rate (TPR): at most 1% of correctly classified
clean examples can be rejected. As a result, the confidence threshold is determined only by
correctly classified clean examples, independent of adversarial examples. Incorrectly rejecting
a significant fraction of correctly classified clean examples is unacceptable. This is also the
reason why we do not report the area under the receiver operating characteristic (ROC) curve
as related work [LLLS18b, MLW+18] (see Appendix D.3 for a discussion). Instead, we consider
the false positive rate (FPR) for fixed TPR, see Figure 7.4. Appendix D.4 also contains results
for 95% and 98% TPR for comparison.
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Figure 7.4: ROC and RErr Curves: On SVHN,
we show ROC curves when distinguishing cor-
rectly classified test examples from adversarial
examples by confidence (left) and (confidence-
thresholded) RErr against confidence thresh-
old τ (right) for worst-case adversarial exam-
ples across L∞ attacks with ϵ = 0.03. The con-
fidence threshold τ is chosen exclusively on
correctly classified clean examples to obtain
99%TPR. For CCAT, this results in τ ≈ 0.6.
Note that RErr subsumes both Err and FPR.

7.3.3 Robustness Evaluation

In the second stage, after confidence-thresholding, we consider the widely used robust test
error (RErr) [MMS+18]. It quantifies the model’s test error in the case where all test examples
are allowed to be attacked, i.e., modified within the chosen threat model, e.g., for Lp:

“Standard” RErr =
1
N

N

∑
n=1

max
∥δ∥p≤ϵ

1 f (xn+δ) ̸=yn (7.8)

where {(xn, yn)}N
n=1 are test examples and labels. In practice, RErr is computed empirically

using adversarial attacks. Unfortunately, standard RErr does not take into account the option
of rejecting (adversarial) examples.

We propose a generalized definition adapted to our confidence-thresholded setting where
the model can reject examples. For fixed confidence threshold τ at 99%TPR, the confidence-
thresholded RErr is defined as

RErr(τ) =

N
∑

n=1
max

∥δ∥p≤ϵ,c(xn+δ)≥τ
1 f (xn+δ) ̸=yn

N
∑

n=1
max
∥δ∥p≤ϵ

1c(xn+δ)≥τ

(7.9)

with c(x) = maxk fk(x) and f (x) being the model’s confidence and predicted class on example
x, respectively. Essentially, this is the test error on test examples that can be modified within
the chosen threat model and pass confidence thresholding. For τ = 0 (i.e., all examples
pass confidence thresholding) this reduces to the standard RErr, comparable to related work.
We stress that our adaptive attack in Equation (7.4) directly maximizes the numerator of
Equation (7.9) by maximizing the confidence of classes not equal y. A (clean) confidence-
thresholded test error (Err(τ)) is obtained similarly. In the following, if not stated otherwise,
we report confidence-thresholded RErr and Err as default and omit the confidence threshold τ for
brevity.

Implementation Details: As Equation (7.9) cannot be computed exactly, we instead compute

∑N
n=1 max{1 f (xn) ̸=yn1c(xn)≥τ,1 f (x̃n) ̸=yn1c(x̃n)≥τ}

∑N
n=1 max{1c(xn)≥τ,1c(x̃n)≥τ}

(7.10)

which is an upper bound assuming that our attack is perfect. Essentially, this counts the
test examples xn that are either classified incorrectly with confidence c(xn) ≥ τ or that can
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be attacked successfully x̃n = xn + δ with confidence c(x̃n) ≥ τ. This is normalized by the
total number of test examples xn that have c(xn) ≥ τ or where the corresponding adversarial
example x̃n has c(x̃n) ≥ τ. Again, it can easily be seen that τ = 0 reduces Equation (7.10) to its
unthresholded variant, i.e., standard RErr, ensuring full comparability to related work.

We also want to highlight two special cases that are correctly taken into account by
Equation (7.10): (a) if a correctly classified test example xn with f (xn) = yn has confidence
c(xn) < τ and is rejected, but the corresponding adversarial example x̃n with f (x̃n) ̸= y has
confidence c(x̃n) ≥ τ and is thus not rejected, this is counted both in the numerator and
denominator; (b) if an incorrectly classified test example xn with f (xn) ̸= y and confidence
c(xn) < τ is rejected, but has a corresponding adversarial example x̃n with f (x̃n) ̸= y and
confidence c(xn) ≥ τ such that it is not rejected, this is also counted in the numerator as
well as denominator. Note that these cases are handled differently in a detection evaluation
following related work [MLW+18, LLLS18b]: negatives are adversarial examples corresponding
to correctly classified clean examples that are successful.

Connection to FPR: FPR quantifies how well an adversary can perturb (correctly classified)
examples while not being rejected. The confidence-thresholded RErr is more conservative
as it measures any non-rejected error (adversarial or not). For example, case (b) from the
above paragraph would not contribute towards the FPR since the original test example is
already misclassified. Thus, while RErr implicitly includes FPR as well as Err, it is even more
conservative than just considering “FPR + Err”. Therefore, we report only RErr and include
FPRs for all our experiments in the appendix.

7.3.4 Per-Example Worst-Case Evaluation

Instead of reporting average or per-attack results, we use a per-example worst-case evaluation
scheme: For each individual test example, all adversarial examples from all attacks (and
restarts) are accumulated. Subsequently, per test example, only the adversarial example with the
highest confidence is considered, resulting in a significantly stronger robustness evaluation
compared to related work.

7.4 Experiments

We evaluate CCAT in comparison with AT [MMS+18] and related work [MWK20, ZYJ+19]
on MNIST [LBBH98], SVHN [NWC+11] and Cifar10 [Kri09] as well as MNIST-C [MG19] and
Cifar10-C [HD19] with corrupted examples (e.g., blur, noise, compression, transforms etc.). We
report confidence-thresholded test error (Err; ↓ lower is better) and confidence-thresholded robust
test error (RErr; ↓ lower is better) for a threshold τ corresponding to 99% true positive rate
(TPR) and omit τ for brevity. We note that normal and standard adversarial training (AT)
are also allowed to reject examples by confidence thresholding. Err is computed on 9000 test
examples. RErr is computed on 1000 test examples. The confidence threshold τ depends only
on correctly classified clean examples and is fixed on the held-out last 1000 test examples.

7.4.1 Attacks

We consider several adaptive white- and black-box Lp attacks for p ∈ {∞, 2, 1, 0} as well as
adversarial frames and distal adversarial examples:
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Adaptive White-Box Attacks: As white-box attacks, we use PGD to maximize the objectives
in Equation (7.2) and (7.4), referred to as PGD-CE and PGD-Conf. We use T = 1000 iterations
and 10 random restarts with random initialization plus one restart with zero initialization for
PGD-Conf, and T = 200 with 50 random restarts for PGD-CE. For L∞, L2, L1 and L0 attacks, we
set ϵ to 0.3, 3, 18, 15 (MNIST) or 0.03, 2, 24, 10 (SVHN/Cifar10). Both PGD-CE and PGD-Conf
also use momentum and backtracking. These two “tricks” add two additional hyperparameters
to the number of iterations T and the learning rate γ, namely the momentum parameter β and
the learning rate factor α. After each iteration, the computed update, already including the
momentum term, is only applied if this improves the objective. This is checked through an
additional forward pass. If not, the learning rate is divided by α, and the update is rejected. It
is important to note that the learning rate is updated per test example individually. In practice,
for PGD-CE, we use γ = 0.05, β = 0.9 and α = 1.25; for PGD-Conf, with T = 1000 iterations,
we use γ = 0.001, β = 0.9 and α = 1.1.

PGD for L∞ adversarial examples uses a signed gradient and projection is implemented
through clipping to [−ϵ, ϵ]. For the L2 norm, the gradient is normalized by dividing by the L2
norm, for the L1 norm only the 1% largest values (in absolute terms) of the gradient are kept
and normalized by their L1 norm, and for the L0 norm, the gradient is normalized by dividing
by the L1 norm. The L1 projection follows the algorithm of [DSSC08] and for L0 adversarial
examples, only the ϵ largest values are kept. Similarly, initialization for L2 and L1 are simple
by randomly choosing a direction and then normalizing by their norm. For L0, we randomly
choose pixels with probability (2/3ϵ)/(HWD) and set them to a uniformly random values
u ∈ [0, 1], where H × W × D is the image size. We found that tuning the learning rate for PGD
with L1 and L0 constraints is more difficult, making multiple restarts necessary.

Adaptive Black-Box Attacks: As black-box attacks, we additionally evaluate random sampling
with T = 5000 attempts. We also implemented the Query-Limited (QL) black-box attack of
[IEAL18] using a population of 50 and variance of 0.1 for estimating the gradient. We use a
learning rate of 0.001 (note that the gradient is signed, as in [MMS+18]) and also integrated
a momentum term with β = 0.9 and backtracking with α = 1.1 and T = 1000 iterations. We
use zero and random initialization with 10 random restarts. For the Simple attack we follow
the algorithmic description in [NK17] considering only axis-aligned perturbations of size ϵ
per pixel. We run the attack for T = 1000 iterations and allow 10 random restarts. Following,
[KH18], we further use the Geometry attack for T = 1000 iterations. Random sampling,
QL, Simple and Geometry attacks are run for arbitrary Lp, p ∈ {∞, 2, 1, 0}. For L∞, we also
use the Square attack proposed in [ACFH20] with T = 5000 iterations with a probability of
change of 0.05. For all attacks, we use Equation (7.4) as objective. Finally, for L0, we also use
Corner Search (CS) [CH19] with the cross-entropy loss as objective, for T = 200 iterations. We
emphasize that, except for QL, these attacks are not gradient-based and do not approximate
the gradient. Furthermore, we note that all attacks except CS are adapted to explicitly attack
CCAT by maximizing confidence.

Adversarial Frames and Distal Adversarial Examples: Besides Lp attacks, we also consider
adversarial frames [ZZRP19] which allow a 2 (MNIST) or 3 (SVHN/Cifar10) pixel border to be
manipulated arbitrarily within [0, 1] to maximize Equation (7.4) using PGD. Furthermore, we
compute distal adversarial examples [HAB19] starting with a random image and using PGD
to maximize (7.4) within a L∞-ball of size ϵ = 0.3 (MNIST) or ϵ = 0.03 (SVHN/Cifar10).

Summary: Overall, we evaluate 7 Lp attacks (not counting Random) with up to 50 restarts
and 5000 iterations depending on the attack. As outlined in Section 7.3.4, we evaluate using
the per-example worst-case, i.e., the most effective attack (and restart) per example. All of these
attacks are summarized below:
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Attack Objective T Restarts

PGD-CE Equation (7.2), random init. 200 50
PGD-Conf Equation (7.4), zero + random init. 1000 11
QL† Equation (7.4), zero + random init. 1000 11
Simple† Equation (7.4) 1000 10
Square† Equation (7.4), L∞, L2 only 5000 1
CS† Equation (7.2), L0 only 200 1
Geometry† Equation (7.4) 1000 1
Random† Equation (7.4) – 5000
† Black-box attacks.

7.4.2 Training and Baselines

We train 50%/50% AT (AT-50%) and CCAT as well as 100% AT (AT-100%) with L∞ attacks
using T = 40 iterations for PGD-CE and PGD-Conf (including momentum and backtracking
with β = 0.9, α = 1.5), respectively, and ϵ = 0.3 (MNIST) or ϵ = 0.03 (SVHN/Cifar10). We
use ResNet-20 [HZRS16a], implemented in PyTorch [PGC+17]. For CCAT, we use ρ = 10 and
also train on 50% clean/50% adversarial examples (per batch) as for AT-50%. We train using
stochastic gradient descent with a batch size of 100 and a total of 100 and 200 epochs on MNIST
and SVHN/Cifar10, respectively. For PGD-CE we use a learning rate of 0.05, 0.01 and 0.005
on MNIST, SVHN and Cifar10. For PGD-Conf we use a learning rate of 0.005. For CCAT, we
randomly switch between random and zero initialization. For training, we start with a learning
rate of 0.1 on MNIST/SVHN and 0.075 on Cifar10. The learning rate is multiplied by 0.95 after
each epoch. We do not use weight decay. On SVHN and Cifar10, we use random cropping,
random flipping (only Cifar10) and contrast augmentation during training.

As baseline, we use the multi-steepest descent (MSD) adversarial training of [MWK20],
using the code and models provided in the official repository2. The models correspond to
a LeNet-like [LBBH98] architecture on MNIST, and the pre-activation version of ResNet-18
[HZRS16a] on Cifar10. The models were trained with L∞, L2 and L1 adversarial examples and
ϵ set to 0.3, 1.5, 12 and 0.03, 0.5, 12, respectively. Additionally, we compare to TRADES [ZYJ+19]
using the code and pre-trained models from the official repository3. The models correspond to
a convolutional architecture with four convolutional and three fully-connected layers [CW17b]
on MNIST, and a wide ResNet, specifically WRN-10-28 [ZK16], on Cifar10. Both are trained
using only L∞ adversarial examples with ϵ = 0.3 and ϵ = 0.03, respectively. Finally, on Cifar10,
we also use the pre-trained ResNet-50 from [MMS+18] obtained from the official repository4.
The model was trained on L∞ adversarial examples with ϵ = 0.03. We emphasize that for all
these baselines the same evaluation protocol as for CCAT applies.

Besides these adversarial training baselines, we evaluate two detection methods: the
Mahalanobis detector (MAHA) of [MLW+18] and the local intrinsic dimensionality (LID)
detector of [LLLS18b]. We used the code provided by [LLLS18b] from the official repository5.
For evaluation, we used the provided setup, adding only PGD-CE and PGD-Conf with T = 1000,
T = 200 and T = 40. For T = 1000, we used 5 random restarts, for T = 200, we used 25 restarts,
and for T = 40, we used one restart. These were run for L∞, L2, L1 and L0. We also evaluated

2https://github.com/locuslab/robust_union
3https://github.com/yaodongyu/TRADES
4https://github.com/MadryLab/robustness
5https://github.com/pokaxpoka/deep_Mahalanobis_detector

https://github.com/locuslab/robust_union
https://github.com/yaodongyu/TRADES
https://github.com/MadryLab/robustness
https://github.com/pokaxpoka/deep_Mahalanobis_detector
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SVHN: RErr @99%TPR, L∞, ϵ = 0.03

worst
case

top-5 attacks/restarts
out of 7 attacks
with 84 restarts

AT-50% 56.0 52.1 52.0 51.9 51.6 51.4
CCAT 39.1 23.6 13.7 13.6 12.6 12.5

Table 7.1: Per-Example Worst-Case Evaluation:
Confidence-thresholded RErr with τ@99%TPR for the
per-example worst-case and the top-5 individual at-
tacks/restarts among 7 attacks with 84 restarts in to-
tal. Multiple restarts are necessary to effectively attack
CCAT, demonstrating that it is difficult to “crack”.

distal adversarial examples. While the hyperparameters were chosen for our L∞ PGD-CE attack
(T = 40, one restart) and kept fixed for other threat models, the logistic regression classifier
trained on the computed statistics (e.g., the Mahalanobis statistics) is trained for each threat
model individually. This results in a significant advantage over AT and CCAT. For worst-case
evaluation, we use the obtained detection score instead of the model’s confidence (as done for
AT and CCAT). This means, for each test example individually, we consider the adversarial
example with the worst detection score.

7.4.3 Ablation Study

In the following, we briefly discuss ablation experiments supporting our choice of evaluation
metrics as well as (per-example) worst-case evaluation. We also ablate the proposed back-
tracking scheme for PGD-Conf. Ablations regarding attack and training hyperparameters are
included in Appendix D.3.1.
Evaluation Metrics: Figure 7.4 shows ROC curves, i.e., how well adversarial examples can
be rejected by confidence. As marked in red, we are only interested in the FPR for the
conservative choice of 99%TPR, yielding the confidence threshold τ. The RErr curves highlight
how robustness is influenced by the threshold: AT also benefits from a reject option, however,
not as much as CCAT which has been explicitly designed for rejecting adversarial examples.
Worst-Case Evaluation: Table 7.1 illustrates the importance of worst-case evaluation on
SVHN, showing that CCAT is significantly “harder” to attack than AT. We show the worst-
case RErr over all L∞ attacks as well as the top-5 individual attacks (each restart treated as
separate attack). For AT-50%, a single restart of PGD-Conf with T = 1000 iterations is highly
successful, with 52.1% RErr close to the overall worst-case of 56%. For CCAT, in contrast,
multiple restarts are crucial as the best individual attack, PGD-Conf with T = 1000 iterations
and zero initialization obtains only 23.6% RErr compared to the overall worst-case of 39.1%.
Backtracking: Figure 7.5 illustrates the advantage of backtracking for PGD-Conf with T=40
iterations on 5 test examples of SVHN. Backtracking results in better objective values and
avoids oscillation, i.e., a stronger attack for training and testing. In addition, while T=200
iterations are sufficient against AT, we needed up to T=1000 iterations for CCAT.

7.4.4 Main Results

Our main results are presented in Table 7.2. In this section, we discuss robustness against both
seen and unseen adversarial examples and compare to the baselines from Section 7.4.2. We
also report the worst-case robustness across all threat models in Table 7.3. We note that results
for 95% and 98%TPR, including evaluated FPRs, can be found in Appendix D.4.
Robustness Against seen L∞ Attacks: Considering Table 7.2 and L∞ adversarial examples as
seen during training, CCAT exhibits comparable robustness to AT. With 7.4%/67.9% RErr on
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Figure 7.5: Backtracking: Our L∞ PGD-Conf attack using 40 iterations with momentum
and our developed backtracking scheme (left) and without both (right) on SVHN. We plot
Equation (7.4) over iterations for the first 5 test examples corresponding to different colors.
Backtracking avoids oscillation and obtains higher overall objective values within the same
number of iterations.

MNIST/Cifar10, CCAT lacks behind AT-50% (1.7%/62.7%) only slightly. On SVHN, in contrast
CCAT outperforms AT-50% and AT-100% significantly with 39.1% vs. 56.0% and 48.3%. We
note that CCAT and AT-50% are trained on 50% clean / 50% adversarial examples. This is in
contrast to AT-100% trained on 100% adversarial examples, which improves robustness slightly,
e.g., from 56%/62.7% to 48.3%/59.9% on SVHN/Cifar10.

Robustness Against unseen Lp Attacks: Regarding unseen attacks, AT’s robustness deterio-
rates quickly while CCAT is able to generalize robustness to novel threat models. On SVHN,
for example, RErr of AT-50% goes up to 88.4%, 99.4%, 99.5% and 73.6% for larger L∞, L2, L1
and L0 attacks. In contrast, CCAT’s robustness generalizes to these unseen attacks significantly
better, with 53.1%, 29%, 31.7% and 3.5%, respectively. The results on MNIST and Cifar10
or for AT-100% tell a similar story. However, AT generalizes better to L1 and L0 attacks on
MNIST, possibly due to the large L∞-ball used during training (ϵ = 0.3). Here, training purely
on adversarial examples, i.e., AT-100% is beneficial. On Cifar10, CCAT has more difficulties
with large L∞ attacks (ϵ = 0.06) with 92% RErr. As shown in the appendix, AT benefits from
considering FPR as clean Err is not taken into account. On Cifar10, for example, 47.6% FPR
compared to 62.7% RErr for AT-50%. This is obviously less pronounced for CCAT due to the
improved Err compared to AT. Overall, CCAT improves robustness against arbitrary (unseen)
Lp attacks, demonstrating that CCAT indeed extrapolates near-uniform predictions beyond the
L∞ ϵ-ball used during training.

Comparison to MSD and TRADES: TRADES is able to outperform CCAT alongside AT
(including AT-Madry) on Cifar10 with respect to the L∞ adversarial examples seen during
training: 43.5% RErr compared to 68.4% for CCAT. This might be a result of training on
100% adversarial examples and using more complex models: TRADES uses a WRN-10-28 with
roughly 46.1M weighs, in contrast to our ResNet-20 with 4.3M (and ResNet-18 with 11.1M for
MSD). However, regarding unseen L2, L1 and L0 attacks, CCAT outperforms TRADES with
52.2%, 58.8% and 23% compared to 70.9%, 96.9% and 36.9% in terms of RErr. Similarly, CCAT
outperforms MSD. This is surprising, as MSD trains on both L2 and L1 attacks with smaller ϵ,
while CCAT does not. Only against larger L∞ adversarial examples with ϵ = 0.06, TRADES
reduces RErr from 92.4% (CCAT) to 81%. Similar to AT, TRADES also generalizes better to
L2, L1 or L0 on MNIST, while MSD is not able to compete. Overall, compared to MSD and
TRADES, the robustness obtained by CCAT generalizes better to previously unseen attacks. We
also note that, on MNIST, CCAT outperforms the robust Analysis-by-Synthesis (ABS) approach
of [SRBB19] w.r.t. L∞, L2, and L0 attacks.
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MNIST: Err ↓ in % confidence-thresholded RErr ↓ for τ@99%TPR
(clean)
τ = 0

(clean)
99%TPR

L∞
ϵ = 0.3

L∞
ϵ = 0.4

L2
ϵ = 3

L1
ϵ = 18

L0
ϵ = 15

adv.
frames

(seen) (seen) seen unseen unseen unseen unseen unseen

Normal 0.4 0.1 100.0 100.0 100.0 100.0 92.3 87.7
AT-50% 0.5 0.0 1.7 100.0 81.5 24.6 23.9 73.7
AT-100% 0.5 0.0 1.7 100.0 84.8 21.3 13.9 62.3
CCAT 0.3 0.1 7.4 11.9 0.3 1.8 14.8 0.2

* MSD 1.8 0.9 34.3 98.9 59.2 55.9 66.4 8.8
* TRADES 0.5 0.1 4.0 99.9 44.3 9.0 35.5 0.2

FPR ↓
distal

unseen

100.0
100.0
100.0
0.0

100.0
100.0

Err ↓
corrupted
MNIST-C
unseen

32.8
12.6
17.6
5.7

6.0
7.9

SVHN: Err ↓ in % confidence-thresholded RErr ↓ for τ@99%TPR
(clean)
τ = 0

(clean)
99%TPR

L∞
ϵ = 0.03

L∞
ϵ = 0.06

L2
ϵ = 2

L1
ϵ = 24

L0
ϵ = 10

adv.
frames

(seen) (seen) seen unseen unseen unseen unseen unseen

Normal 3.6 2.6 99.9 100.0 100.0 100.0 83.7 78.7
AT-50% 3.4 2.5 56.0 88.4 99.4 99.5 73.6 33.6
AT-100% 5.9 4.6 48.3 87.1 99.5 99.8 89.4 26.0
CCAT 2.9 2.1 39.1 53.1 29.0 31.7 3.5 3.7

* LID 3.3 2.2 91.0 93.1 92.2 90.0 41.6 89.8
* MAHA 3.3 2.2 73.0 79.5 78.1 67.5 41.5 9.9

FPR ↓
distal

unseen

87.1
86.3
81.0
0.0

8.6
0.0

CIFAR10: Err ↓ in % confidence-thresholded RErr ↓ for τ@99%TPR
(clean)
τ = 0

(clean)
99%TPR

L∞
ϵ = 0.03

L∞
ϵ = 0.06

L2
ϵ = 2

L1
ϵ = 24

L0
ϵ = 10

adv.
frames

(seen) (seen) seen unseen unseen unseen unseen unseen

Normal 8.3 7.4 100.0 100.0 100.0 100.0 84.7 96.7
AT-50% 16.6 15.5 62.7 93.7 98.4 98.4 74.4 78.7
AT-100% 19.4 18.3 59.9 90.3 98.3 98.0 72.3 79.6
CCAT 10.1 6.7 68.4 92.4 52.2 58.8 23.0 66.1

* MSD 18.4 17.6 53.2 89.4 88.5 68.6 39.2 82.6
* TRADES 15.2 13.2 43.5 81.0 70.9 96.9 36.9 72.1
* AT-Madry 13.0 11.7 45.1 84.5 98.7 97.8 42.3 73.3

* LID 6.4 4.9 99.0 99.2 70.6 89.4 47.0 66.1
* MAHA 6.4 4.9 94.1 95.3 90.6 97.6 49.8 70.0

FPR ↓
distal

unseen

83.3
75.0
72.5
0.0

76.7
76.2
78.5

0.1
2.4

Err ↓
corrupted
CIFAR10-C

unseen

12.3
16.2
19.6
8.5

19.3
15.0
12.9

11.59
12.4

Table 7.2: Main Results: Generalizing Robustness. For L∞, L2, L1, L0 attacks and adversarial
frames, we report per-example worst-case (confidence-thresholded) Err and RErr at 99%TPR
across all attacks. ϵ is reported in the corresponding columns. For distal adversarial examples
and corrupted examples, we report FPR and Err, respectively. L∞ attacks with ϵ=0.3 on MNIST
and ϵ = 0.03 on SVHN/Cifar10 were used for training (seen). The remaining attacks were
not encountered during training (unseen). CCAT outperforms AT and the other baselines
regarding robustness against unseen attacks. * Pre-trained models with different architecture,
LID/MAHA use the same model.

Detection Baselines: The detection methods LID and MAHA are outperformed by CCAT
across all datasets and threat models. On SVHN, for example, MAHA obtains 73% RErr against
the seen L∞ attacks and 79.5%, 78.1%, 67.5% and 41.5% RErr for the unseen L∞, L2, L1 and L0
attacks. LID is consistently outperformed by MAHA on SVHN. This is striking, as we only
used PGD-CE and PGD-Conf to attack these approaches and emphasizes the importance of
training adversarially against an adaptive attack to successfully reject adversarial examples.

Robustness Against Unconventional Attacks: Against adversarial frames, robustness of AT
reduces to 73.7% /62.3% RErr (AT-50%/100%), even on MNIST, while CCAT achieves 0.2%.
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MNIST:
all

unseen

FPR↓ RErr ↓
Normal 99.3 100.0
AT-50% 99.3 100.0
AT-100% 99.2 100.0
CCAT 23.4 23.9
* MSD 97.0 99.2
* TRADES 99.3 99.9
* AT-Madry – –

SVHN:
all

unseen

FPR↓ RErr ↓
95.9 100.0
96.2 99.9
93.7 99.9
57.5 61.1

– –
– –
– –

CIFAR10:
all

unseen

FPR↓ RErr ↓
93.0 100.0
84.1 99.2
81.0 98.6
86.3 94.8

76.2 94.1
82.8 97.4
87.6 98.9

CIFAR10:
unseen

except L∞
with ϵ=0.06

FPR↓ RErr ↓
93.0 100.0
84.1 99.2
81.1 98.7
69.1 77.6
75.6 93.5
82.7 97.3
87.6 98.9

Table 7.3: Worst-Case Results Across Unseen Attacks: We report the (per-example) worst-case,
confidence-thresholded RErr and FPR across all unseen attacks on MNIST, SVHN and Cifar10.
On Cifar10, we additionally present results for all attacks except L∞ adversarial examples with
larger ϵ = 0.06 (indicated in blue). CCAT is able to outperform all baselines, including MSD
and TRADES, significantly on MNIST and SVHN. On Cifar10, CCAT performs poorly on L∞
adversarial examples with larger ϵ = 0.06. However, excluding these adversarial examples,
CCAT outperforms all baselines on Cifar10. * Pre-trained models with different architectures.

MSD, in contrast, is able to preserve robustness better with 8.8% RErr, which might be due
to the L2 and L1 attacks seen during training. CCAT outperforms both approaches with 0.2%
RErr, as does TRADES. On SVHN and Cifar10, however, CCAT outperforms all approaches,
including TRADES, considering adversarial frames. Against distal adversarial examples, CCAT
outperforms all approaches significantly, with 0% FPR, compared to the second-best of 72.5%
for AT-100% on Cifar10. Only the detection baselines LID and MAHA are competitive, reaching
close to 0% FPR. This means that CCAT is able to extrapolate low-confidence distributions to
far-away regions of the input space. Finally, we consider corrupted examples (e.g., blur, noise,
transforms etc.) where CCAT also improves results, i.e., mean Err across all corruptions. On
Cifar10-C, for example, CCAT achieves 8.5% compared 12.9% for AT-Madry and 12.3% for
normal training. On MNIST-C, only MSD yields a comparably low Err: 6% vs. 5.7% for CCAT.

Worst-Case Across Unseen Attacks: Table 7.3 reports per-example worst-case RErr and FPR
for 99%TPR considering all unseen attacks. On MNIST and SVHN, RErr increases to nearly
100% for AT, both AT-50% and AT-100%. CCAT, in contrast, is able to achieve considerably
lower RErr: 23.9% on MNIST and 61.1% on SVHN. Only on Cifar10, CCAT does not result in
a significant improvement. All methods, including related work such as MSD and TRADES
yield RErr of 94% or higher. However, this is mainly due to the poor performance of CCAT
against large L∞ adversarial examples with ϵ = 0.06. Excluding these adversarial examples
(right most table, indicated in blue) shows that RErr improves to 77.6% for CCAT, while RErr
for the remaining methods remains nearly unchanged. Overall, these experiments emphasize
that CCAT is able to generalize robustness to previously unseen attacks.

Improved Test Error: CCAT also outperforms AT regarding Err, coming close to that of
normal training. On all datasets, confidence-thresholded Err for CCAT is better or equal than that
of normal training. On Cifar10, only LID/MAHA achieve a better standard and confidence-
thresholded Err using a ResNet-34 compared to our ResNet-20 for CCAT (21.2M vs. 4.3M
weights). In total the performance of CCAT shows that the robustness-generalization trade-off
can be improved significantly.
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Cifar10: AT with L∞ PGD-Conf, ϵ = 0.03 for training and testing
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Cifar10: CCAT with L∞ PGD-Conf, ϵ = 0.03 for training and testing
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Classes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Figure 7.6: Confidence Calibration: We plot the probabilities for all ten classes along adversarial
directions for AT and CCAT (with ρpow = 10). Adversarial examples were computed using
our L∞-PGD-Conf attack, c.f. Section 7.4.1: using projected gradient descent [MMS+18] the
confidence of the adversarial examples is maximized for T = 1000 and L∞-constraint ϵ =
0.03. The robustness of AT does not generalize beyond the ϵ = 0.03-ball as high confidence
adversarial examples can be found for larger perturbations, whereas CCAT predicts close to
uniform confidence after some transition phase allowing to easily detect adversarial examples.

7.4.5 Analysis

In the following, we present qualitative results showing that CCAT does indeed reduce
confidence on adversarial examples. This also leads to more meaningful behavior in between
test examples of different classes.

Confidence Along Adversarial Directions: In Figure 7.6, we plot the probabilities for all ten
classes along an adversarial direction for the first 5 test examples on CIFAR10. We note that
these directions do not necessarily correspond to successful or high-confidence adversarial
examples. The adversarial examples were obtained using our L∞ PGD-Conf attack with
T = 1000 iterations and zero initialization for ϵ = 0.03. For AT, we usually observe a change
in predictions along these directions, some occurring within ∥δ∥∞ ≤ ϵ, others occurring
for ∥δ∥∞ > ϵ. However, AT always assigns high confidence. Thus, when allowing larger
adversarial perturbations at test time, robustness of AT reduces significantly. For CCAT,
in contrast, there are only few such cases; more often, the model achieves a near uniform
prediction for small ∥δ∥∞ and extrapolates this behavior beyond the ϵ-ball used for training.
Furthermore, this illustrates why using more iterations at test time with momentum and
backtracking are necessary to find adversarial examples as the objective becomes more complex
compared to AT.

Confidence Along Interpolation: In Figure 7.2, on MNIST, we additionally illustrate the
advantage of CCAT with respect to the toy example in Proposition 2. Here, we consider the
case where the ϵ-balls of two training or test examples (in different classes) overlap. As we show
in Proposition 2, adversarial training is not able to handle such cases, resulting in the trade-off
between accuracy in robustness reported in the literature [TSE+19, SHS19, RXY+19, ZYJ+19].
This is because adversarial training enforces high-confidence predictions on both ϵ-balls
(corresponding to different classes), resulting in an obvious conflict. CCAT, in contrast,
enforces uniform predictions throughout the largest parts of both ϵ-balls, resolving the conflict.
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7.5 Conclusion

Adversarial training results in robust models against the threat model seen during training, e.g.,
L∞ adversarial examples. However, generalization to unseen attacks such as other Lp adver-
sarial examples or larger L∞ perturbations is insufficient. We propose confidence-calibrated
adversarial training (CCAT) which biases the model towards low confidence predictions on
adversarial examples and beyond. Then, adversarial examples can easily be rejected based on
their confidence. Trained exclusively on L∞ adversarial examples, CCAT improves robustness
against unseen threat models such as larger L∞, L2, L1 and L0 adversarial examples, adver-
sarial frames, distal adversarial examples and corrupted examples. Additionally, accuracy
is improved in comparison to adversarial training. We thoroughly evaluated CCAT using 7
different white-and black-box attacks with up to 50 random restarts and 5000 iterations. These
attacks where adapted to CCAT by directly maximizing confidence. We reported worst-case
robust test error, extended to our confidence-thresholded setting, across all attacks.

7.5.1 Discussion of Recent Results

Since the publication of our work [SHS20], CCAT has also been evaluated using novel attacks.
Adaptive AutoAttack (AAA) [YBTV21] automatically searches for adaptive attacks, e.g., con-
sidering various attack types, hyperparameters and objectives. [Sch22], in contrast, adapts our
PGD-Conf attack with an improved backtracking scheme. We briefly discuss results of both
works, considering confidence-thresholded RErr against L∞ adversarial examples:

[YBTV21] includes results for ϵ = 8/255 ≈ 0.0314, which is slightly larger than our ϵ = 0.03
used during training. Compared to 68.4% RErr reported in Table 7.2, AAA obtains 60.46%
using the “default” setting including 3 attacks. Searching for 8 attacks instead, RErr increases
to 73.13%. We used the official code6 to rerun this evaluation for ϵ = 0.03 and obtain 65.6%
RErr. Surprisingly, this is lower than our reported 68.4%, demonstrating that our evaluation in
Section 7.1 is stronger than standard attacks. Re-training CCAT using a WRN-28-10 [ZK16]
further reduces RErr to 54.5%. While [YBTV21] reports a runtime of 205 minutes against our
ResNet-20, the search actually requires 659 minutes. On a NVIDIA™ Tesla® P40, considering
the WRN-28-10, attack and search time exceed 1000 and 2500 minutes, respectively.

More recently, [Sch22] adapts our PGD-Conf using the Armijo-rule for backtracking
[Arm66], requiring 9 additional forward passes per iteration. More importantly, [Sch22]
evaluates 100 restarts for standard PGD-CE, our PGD-Conf and the proposed “Backtracking-
PGD-Conf”. All attacks are run with T = 1000 iterations and increase RErr significantly
to 92.5%, suggesting very poor robustness. Interestingly, Backtracking-PGD-Conf with only
T = 100 iterations obtains only 59.9% RErr, illustrating that 100 restarts with T = 1000 it-
erations each are necessary. While we did not reproduce these results with the more robust
WRN-28-10, [Sch22] reports a considerable computational overhead for our ResNet-20: 650
minutes for PGD-CE and up to 2077 minutes for Backtracking-PGD-Conf.

Overall, these works emphasize the difficulty and computational complexity of attacking
CCAT, as already highlighted in Section 7.4.3. While AAA [YBTV21] does not increase RErr,
[Sch22] suggests that CCAT is significantly less robust under an extreme evaluation protocol
with 100 restarts, 1000 iterations each. Both works, however, demonstrate that CCAT is not only
difficult to attack, requiring more sophisticated attacks (e.g., more search time), but effective
attacks are computationally expensive which can be sufficient in many practical applications.

6https://github.com/eth-sri/adaptive-auto-attack

https://github.com/eth-sri/adaptive-auto-attack
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In this chapter, we switch focus from adversarial robustness to uncertainty estimation in
general. But instead of quantifying uncertainty using the predicted confidence as proposed
in Chapter 7, we allow the model to predict sets of classes instead. The number of predicted

classes is an intuitive estimate of uncertainty and making sure that the true class is included
with high probability leads to a statistical framework known as conformal prediction (CP).

The high accuracy on test data obtained using deep neural networks does generally not
provide sufficient guarantees for safe deployment, especially in high-stake applications such as
autonomous driving or medical diagnosis. CP addresses these issues by using the classifier’s
probability estimates to predict confidence sets containing the true class with a user-specified
probability. However, using CP as a separate processing step after training prevents the
underlying model from adapting to the prediction of confidence sets. Thus, we explore to
differentiate through CP during training with the goal of training model with the conformal
wrapper end-to-end. In our approach, conformal training (ConfTr), we specifically “simulate”
conformalization on mini-batches during training. We show that ConfTr outperforms state-
of-the-art CP methods for classification by reducing the average confidence set size, called
inefficiency. Moreover, it allows “shaping” the confidence sets predicted at test time, which is
difficult for standard CP. On experiments with several datasets, we show ConfTr can influence
how inefficiency is distributed across classes, or guide the composition of confidence sets in
terms of the included classes, while retaining the guarantees offered by CP.

This chapter is based on [SDCD21]: As first author, David Stutz conducted all included
experiments and was the main writer of the paper. The work was conducted while interning at
DeepMind and presented during an invited talk at the International Seminar on Distribution-
Free Statistics at UC Berkeley.
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8.1 Introduction

In classification tasks, for input x, we approximate the posterior distribution over classes
y ∈ [K] := {1, . . . , K}, denoted πy(x) ≈ p(Y = y|X = x). Following Bayes’ decision rule, the
single class with the highest posterior probability is predicted. This way, deep neural networks
πθ,y(x) with parameters θ achieve impressive accuracy on held-out test sets. However, this
does not guarantee safe deployment. Conformal prediction (CP) [VGS05] uses a post-training
calibration step to guarantee a user-specified coverage: by allowing to predict confidence sets
C(X) ⊆ [K], CP guarantees the true class Y to be included with confidence level α, i.e.
p(Y ∈ C(X)) ≥ 1 − α when the calibration examples (Xi, Yi), i ∈ Ical are drawn exchangeably
from the test distribution. This is usually achieved in two steps: In the prediction step, so-called
conformity scores (w.r.t. to a class k ∈ [K]) are computed to construct the confidence sets C(X).
During the calibration step, these conformity scores on the calibration set w.r.t. the true class Yi
are ranked to determine a cut-off threshold τ for the predicted probabilities πθ(x) guaranteeing
coverage 1 − α. This is called marginal coverage as it holds only unconditionally, i.e., the
expectation is being taken not only w.r.t. (X, Y) but also over the distribution of all possible
calibration sets, rather than w.r.t. the conditional distribution p(Y|X).

CP not only provides marginal coverage, but it also outputs intuitive uncertainty estimates:
larger confidence sets |C(X)| generally convey higher uncertainty. Although CP is agnostic
to details of the underlying model πθ(x), the obtained uncertainty estimates depend strongly
on the model’s performance. If the underlying classifier is poor, CP results in too large
and thus uninformative confidence sets. “Uneven” coverage is also a common issue, where
lower coverage is achieved on more difficult classes. To address such problems, the threshold
CP method of [SLW19] explicitly minimizes the expected confidence set size, referred to
as inefficiency. [RSC20] and [CGD21] propose methods that perform favorably in terms of
(approximate) conditional coverage. The adaptive prediction sets (APS) method of [RSC20] is
further extended by [ABJM21] to return smaller confidence sets. These various objectives are
typically achieved by changing the definition of the conformity scores, see Section 8.2 for some
examples. In all cases, CP is used as a post-training calibration step. In contrast, our work does
not focus on advancing CP itself, e.g., through new conformity scores, but develops a novel
training procedure for the classifier πθ .

Indeed, while the flexibility of CP regarding the underlying model appears attractive,
it is also a severe limitation: Learning the model parameters θ is not informed about the
post-hoc “conformalization”, i.e., they are not tuned towards any specific objective such
as reducing inefficiency. During training, the model will typically be trained to minimize
cross-entropy loss. At test time, in contrast, it is used to obtain a set predictor C(X) with
specific properties such as low inefficiency. In concurrent work, [Bel21] addresses this issue
by learning a set predictor C(X) through thresholding logits: Classes with logits exceeding
1 are included in C(X) and training aims to minimize inefficiency while targeting coverage
1 − α. In experiments using linear models only, this approach is shown to decrease inefficiency.
However, [Bel21] ignores the crucial calibration step of CP during training and does not allow
optimizing losses beyond marginal coverage or inefficiency. In contrast, our work subsumes
[Bel21], but additionally considers the calibration step during training, which is crucial for
further decreasing inefficiency. Furthermore, we aim to allow fine-grained control over class-
conditional inefficiency or the composition of the confidence sets by allowing to optimize
arbitrary losses defined on confidence sets.

Contributions: We propose conformal training (ConfTr), a procedure allowing to train model
and conformal wrapper end-to-end. This is achieved by developing smooth implementations



8.2 differentiable conformal predictors 137
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Figure 8.1: Illustration of conformal training (ConfTr): Conformal prediction (CP) wraps any
classifier πθ(x) with parameters θ and constructs a confidence set Cθ with coverage guarantees,
see text. We develop differentiable prediction and calibration implementations, SmoothCal
and SmoothPred. During training, this allows ConfTr to “simulate” CP on each mini-batch B
by calibrating on the first half Bcal and predicting confidence sets on the other half Bpred (c.f.
a⃝). This allows optimizing arbitrary losses on the predicted confidence sets, e.g., reducing

average confidence set size (inefficiency) using a size loss Ω or penalizing specific classes from
being included using a classification loss L (c.f. b⃝).

of state-of-the-art CP methods. Specifically, on each mini-batch, ConfTr “simulates” confor-
malization, using half of the batch for calibration, and the other half for computing a loss on
the predicted confidence sets, c.f. Figure 8.1 a⃝. In experiments, ConfTr consistently reduces
the inefficiency of recent CP methods, such as threshold CP (Thr) [SLW19] and APS [RSC20].
We further improve inefficiency over [Bel21], illustrating the importance of considering the
calibration step during training. Using carefully constructed losses, ConfTr also allows us to
“shape” the confidence sets obtained at test time: We can reduce class-conditional inefficiency
or “coverage confusion”, i.e., the likelihood of two or more classes being included in the same
confidence sets, c.f. Figure 8.1 b⃝. Generally, in contrast to [Bel21], ConfTr allows optimizing
arbitrary losses on the predicted confidence sets. Because ConfTr is agnostic to the CP method
used at test time, our work is complementary to most related work such that any advancement
in terms of CP, e.g., improved conformity scores, are directly applicable to ConfTr, as well.
Most importantly, ConfTr preserves the coverage guarantee obtained through CP.

8.2 Differentiable Conformal Predictors

We are interested in training the model πθ end-to-end with the conformal wrapper in order
to allow fine-grained control over the confidence sets C(X). Before developing differentiable
CP methods (Section 8.2.2), we review two conformal predictors for classification recently
introduced in [SLW19] and [RSC20] (Section 8.2.1). These CP methods consist of two steps:
for prediction (on the test set) we need to define the confidence sets Cθ(X; τ) which depend on
the model parameters θ through the predictions πθ and where the threshold τ is determined
during calibration on a held-out calibration set (Xi, Yi), i ∈ Ical in order to obtain coverage.
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CP Baseline Comparison by Ineff
Dataset, α ThrL Thr APS RAPS

CIFAR10, 0.05 2.22 1.64 2.06 1.74
CIFAR10, 0.01 3.92 2.93 3.30 3.06
CIFAR100, 0.01 19.22 10.63 16.62 14.25 0 2 4 6 8
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CIFAR10: Inefficiency by Class for Baseline+Thr

Figure 8.2: Baseline CP Results on CIFAR: Left: Inefficiency (Ineff, lower is better) for the CP
methods discussed in Section 8.2. Coverage (Cover), omitted here, is empirically close to 1 − α.
Thr clearly outperforms all approaches w.r.t. inefficiency. Right: Inefficiency distribution across
CIFAR10 classes (for α=0.01) is plotted, with more difficult classes yielding higher inefficiency.

8.2.1 Conformal Predictors

In this section, we detail two recent and popular CP methods and also discuss appropriate
evaluation metrics as well as the provided coverage provided by CP in formal terms:

The Threshold Conformal Predictor (Thr) [SLW19] constructs the confidence sets by
thresholding probabilities: Cθ(x; τ) := {k : πθ,k(x) =: Eθ(x, k) ≥ τ}. Here, the subscript Cθ

makes the dependence on the model πθ and its parameters θ explicit. During calibration, τ is
computed as the α(1 + 1/|Ical|)-quantile of the so-called conformity scores Eθ(xi, yi) = πθ,yi(xi).
The conformity scores indicate, for each example, the threshold that ensures coverage. Marginal
coverage of (1 − α) is guaranteed on test examples. Thr is summarized in Algorithm 4 (left)
and can also be applied on logits (ThrL) or log-probabilities (ThrLP) instead of probabilities.

Adaptive Prediction Sets (APS) [RSC20] constructs confidence sets based on the ordered
probabilities. Specifically, Cθ(x; τ) := {k : Eθ(x, k) ≤ τ} with:

Eθ(x, k) := πθ,y(1)(x) + . . . + πθ,y(k−1)(x) + Uπθ,y(k)(x), (8.1)

where πθ,y(1)(x) ≥ . . . ≥ πθ,y(K)(x) are the sorted probabilities and U is a uniform random
variable in [0, 1] to break ties. Similar to Thr, the conformity scores Eθ(xi, yi) w.r.t. the true
classes yi are used for calibration, but the (1 − α)(1 + 1/|Ical|)-quantile is required to ensure
marginal coverage.

Evaluation Metrics: Performance of CP is then measured using two metrics: empirical and
marginal coverage (Cover) as well as inefficiency (Ineff). Letting Itest be a test set of size |Itest|,
these metrics are computed as

Cover :=
1

|Itest| ∑
i∈Itest

δ[yi ∈ C(xi)] and Ineff :=
1

|Itest| ∑
i∈Itest

|C(xi)|, (8.2)

where δ denotes the indicator function that is 1 when its argument is true and 0 otherwise. Due
to the marginal coverage guarantee provided by CP, the empirical coverage, when averaged
across many random calibration/test splits, is Cover ≈ 1 − α. Thus, evaluation concentrates
on inefficiency as the main metric to compare across CP methods and models where lower is
generally better. Note that with accuracy we refer to the (top-1) accuracy with respect to the
arg max-predictions, i.e., arg maxk πθ,k(x), obtained by the underlying model π. As shown in
Figure 8.2 (left), Thr clearly outperforms ThrL, APS and RAPS w.r.t. inefficiency, also averaged
across random Ical/Itest splits.

Coverage Guarantee: We follow [RSC20] and briefly state the marginal coverage guarantee
obtained by these CP methods in formal terms: Given that the learning algorithm used is
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1: Predict(πθ(x), τ):
2: compute Eθ(x, k), k∈[K]
3: return Cθ(x; τ) = {k : Eθ(x, k) ≥ τ}

1: Calibrate({(πθ(xi), yi}n
i=1, α):

2: compute Eθ(xi, yi), i=1, . . . , n
3: return Quantile({Eθ(xi, yi)}, α(1 + 1/n))

1: SmoothPred(πθ(x), τ, T=1):
2: compute Eθ(x, k), k∈[K]
3: return Cθ,k(x; τ) = σ((Eθ(x,k)−τ)/T), k ∈ [K]

1: SmoothCal({(πθ(xi), yi}n
i=1, α):

2: compute Eθ(xi, yi), i=1, . . . , n
3: return SmoothQtl({Eθ(xi, yi)}, α(1+1/n))

Algorithm 4: Smooth CP: Left: Predict computes the conformity scores Eθ(x, k) for each k∈[K]
and constructs the confidence sets Cθ(x; τ) by thresholding with τ. Calibrate determines the
threshold τ as the α(1 + 1/n)-quantile of the conformity scores w.r.t. the true classes yi on a
calibration set {(xi, yi)} of size n:=|Ical|. Thr and APS use different conformity scores. Right:
SmoothPred uses a sigmoid function σ for soft-thresholding to construct confidence sets. As
detailed in Section 8.2.2, these can be understood as soft assignments. Smooth calibration, in
SmoothCal, essentially replaces the quantile computation using a smooth variant, denoted as
SmoothQtl, based on smooth sorting [CTV19, BTBD20, Wil20].

invariant to permutations of the training examples, and the calibration examples {(Xi, Yi)}i∈Ical

are exchangeably drawn from the same distribution as encountered at test time, the discussed
CP approaches satisfy

p(Y ∈ C(X)) ≥ 1 − α (8.3)

Moreover, this bound is near tight if the conformity scores E are almost surely distinct:

p(Y ∈ C(X)) ≤ 1 − α +
1

|Ical|+ 1
. (8.4)

Unfortunately, there is generally no guarantee on conditional coverage, as this requires addi-
tional assumptions [RSC20]. However, class-conditional coverage can be obtained using Thr
[SLW19], which has also been shown to be the most efficient conformal predictor given a fixed
model πθ (i.e., minimizes inefficiency).

CP is intended to be used as a “wrapper” around the model πθ . “Better” CP methods
generally result in lower inefficiency for a fixed model πθ . For example, following Figure 8.2
(left), regularized APS (RAPS) [ABJM21] recently showed how to improve inefficiency compared
to APS by modifying the conformity score – without outperforming Thr, however. Fine-grained
control over inefficiency, e.g., conditioned on the class or the composition of the C(X) is
generally not possible. Integrating CP into the training procedure promises a higher degree of
control, however, requires differentiable CP implementations.

8.2.2 Differentiable Prediction and Calibration Steps

Differentiating through CP involves differentiable prediction and calibration steps: We want
Cθ(x; τ) to be differentiable w.r.t. the predictions πθ(x), and τ to be differentiable w.r.t. to the
predictions πθ(xi), i ∈ Ical used for calibration. The latter involves differentiating through the
quantile computation of Algorithm 4 (left). We emphasize that, ultimately, this allows us to
differentiate through both calibration and prediction w.r.t. the model parameters θ, on which
the predictions πθ(x) and thus the conformity scores Eθ(x, k) depend. For Thr, our smooth
version is summarized in Algorithm 4 (right).
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Prediction: For both Thr and APS, prediction involves thresholding the conformity scores
Eθ(x, k), which can be smoothed using the sigmoid function σ and a temperature parameter T:

Cθ,k(x; τ) := σ ((Eθ(x,k)−τ)/T) with σ(z) = 1/1+exp(−z). (8.5)

Essentially, Cθ,k(x; τ) ∈ [0, 1] represents a soft assignment of class k to the confidence set, i.e.,
can be interpreted as the probability of k being included. For T → 0, the “hard” confidence
set will be recovered, i.e., Cθ,k(x; τ) = 1 for k ∈ Cθ(x; τ) and 0 otherwise. APS additionally
involves sorting the probabilities, i.e., obtaining πθ,y(1)(x) ≥ . . . ≥ πθ,y(K)(x), see Equation (8.1).
Here, any smooth sorting approach [CTV19, BTBD20, Wil20] can be used. These often come
with a “dispersion” hyperparameter ϵ such that smooth sorting approximates “hard” sorting
for ϵ → 0. The resulting Cθ,k(x; τ) is differentiable w.r.t. the model predictions πθ(x) and
consequently w.r.t. its parameters θ.

Calibration: For calibration, two sub-tasks need to be addressed: a smooth way to compute
the conformity score and a differentiable implementation to calculate quantiles. The former
directly follows from the discussion above: for Thr, the probabilities πθ(x) are trivially
differentiable, and for APS, the smooth conformity scores of Equation (8.1) are computed as
detailed above in the prediction step. The latter, i.e., a differentiable quantile computation,
can again be accomplished using smooth sorting. Overall, this results in the threshold τ
being differentiable w.r.t. the predictions on the calibration examples {(πθ(xi), yi}i∈Ical and the
model’s parameters θ as required.

As this approximation is using smooth operations, the coverage guarantee seems lost.
However, in the limit of T, ϵ → 0 we recover the original non-smooth computations and the
corresponding coverage guarantee. Thus, it is reasonable to assume that, in practice, we
empirically obtain coverage close to (1 − α). We found that this is sufficient because these
smooth variants are only used during training. At test time, we use the original (non-smooth)
implementations and the coverage guarantee follows directly from [SLW19, RSC20].

8.3 Conformal Training: Learning Conformal Prediction

The key idea of conformal training (ConfTr) is to “simulate” CP during training, i.e.,
performing both calibration and prediction steps on each mini-batch. This is accomplished
using the differentiable versions of Thr or APS introduced in Section 8.2.2. ConfTr can be
viewed as a generalization of [Bel21] that just differentiates through the prediction step with
a fixed threshold, without considering the crucial calibration step, as we discuss later in
Section 8.3.4. ConfTr is summarized in detail in Algorithm 5.

8.3.1 Conformal Training by Optimizing Inefficiency

ConfTr performs (differentiable) CP on each mini-batch during stochastic gradient descent
(SGD) training. In particular, as illustrated in Figure 8.1 a⃝, we split each mini-batch B in
half: the first half is used for calibration, Bcal, and the second one for prediction and loss
computation, Bpred. That is, on Bcal, we calibrate τ by computing the α(1 + 1/|Bcal|)-quantile
of the conformity scores in a differentiable manner. It is important to note that we compute
Cθ(xi; τ) only for i ∈ Bpred and not for i ∈ Bcal. Then, in expectation across mini-batches and
large enough |Bcal|, CP guarantees coverage 1 − α on Bpred for T, ϵ → 0. In practice, assuming
empirical coverage close to 1 − α, irrespective of the performance of the model πθ , we only
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1: ConformalTraining(α, λ=1):
2: for mini-batch B do
3: randomly split batch Bcal ⊎ Bpred = B
4: {“On-the-fly” calibration on Bcal:}
5: τ = SmoothCal({(πθ(xi), yi)}i∈Bcal , α)
6: {Prediction only on i ∈ Bpred:}
7: Cθ(xi; τ) = SmoothPred(πθ(xi), τ)
8: {Optional classification loss:}
9: LB = 0 or ∑i∈Bpred

L(Cθ(xi; τ), yi)

10: ΩB = ∑i∈Bpred
Ω(Cθ(xi; τ))

11: ∆=∇θ1/|Bpred|(LB + λΩB)
12: update parameters θ using ∆
13: end for

Algorithm 5: Conformal Training (ConfTr)
calibrates on a part of each mini-batch, Bcal,
in each training iteration. Thereby, we obtain
coverage 1− α on the other part, Bpred, at least
in expectation across many batches. Then,
we intend to minimize inefficiency using a
smooth size loss Ω on the other part of the
mini-batch, Bpred, in order to obtain gradients
to update the model’s parameters θ. Option-
ally, an additional classification loss L can
be used to “shape” the obtained confidence
sets. Smooth implementations of calibration
and prediction are used as detailed in Algo-
rithm 4.

need to minimize inefficiency:

minθ log E [Ω(Cθ(X; τ))] with Ω(Cθ(x; τ)) = max

(
0,

K

∑
k=1

Cθ,k(x; τ)− κ

)
. (8.6)

We emphasize that ConfTr optimizes the model parameters θ on which the confidence sets
Cθ depend through the model predictions πθ . Here, Ω is a “smooth” size loss intended to
minimize the expected inefficiency, i.e., E[|Cθ(X; τ)|], not to be confused with the statistic
in Equation (8.2) used for evaluation. Remember that Cπ,k(x; τ) can be understood as a soft
assignment of class k to the confidence set Cθ(x; τ). By default, we use κ = 1 in order to not
penalize singletons. However, κ ∈ {0, 1} can generally be treated as hyperparameter. After
training, any CP method can be applied to calibrate τ on a held-out calibration set Ical as
usual, i.e., the thresholds τ obtained during training are not kept for testing. This preserves the
coverage guarantee of CP.

8.3.2 Conformal Training with Classification Loss

In order to obtain more control over the composition of confidence sets Cθ(X; τ) at test time,
ConfTr can be complemented using a generic loss L:

minθ log (E [L(Cθ(X; τ), Y) + λΩ(Cθ(X; τ))]) . (8.7)

While L can be any arbitrary loss defined directly on the confidence sets Cθ , we propose to use
a “configurable” classification loss Lclass. This classification loss is intended to explicitly enforce
coverage, i.e., make sure the true label Y is included in Cθ(X; τ), and optionally penalize other
classes k not to be included in Cθ , as illustrated in Figure 8.1 b⃝. To this end, we define

Lclass(Cθ(x; τ), y) :=
K

∑
k=1

Ly,k

[
Cθ,k(x; τ) · δ[y = k]︸ ︷︷ ︸

enforce y to be in C

+ (1 − Cθ,k(x; τ)) · δ[y ̸= k]︸ ︷︷ ︸
penalize class k ̸=y not to be in C

]
. (8.8)

As above, Cθ,k(x; τ) ∈ [0, 1] such that 1 − Cθ(x; τ) can be understood as the likelihood of k not
being in Cθ(x; τ). In Equation (8.8), the first term is used to encourage coverage, while the
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second term can be used to avoid predicting other classes. This is governed by the loss matrix
L: For L = IK, i.e., the identity matrix with K rows and columns, this loss simply enforces
coverage (perfect coverage if Lclass = 0). However, setting any Ly,k > 0 for y ̸= k penalizes the
model from including class k in confidence sets with ground truth y. Thus, cleverly defining
L allows defining rather complex objectives, as we will explore next. ConfTr with (optional)
classification loss is summarized in Algorithm 5.

8.3.3 Conformal Training with General and Application-Specific Losses

We consider several use cases motivated by medical diagnosis, e.g., breast cancer screening
[MSG+20] or classification of dermatological conditions [LJE+20, RRA+22, JWG+21]. In skin
condition classification, for example, predicting sets of classes, e.g., the top-k conditions, is
already a common strategy for handling uncertainty. In these cases, we not only care about
coverage guarantees but also desirable characteristics of the confidence sets. These constraints in
terms of the predicted confidence sets can, however, be rather complicated and pose difficulties
for standard CP. We explore several exemplary use cases to demonstrate the applicability of
ConfTr, that are also relevant beyond the considered use cases in medical diagnosis.

First, we consider “shaping” class-conditional inefficiency, formally defined as

Ineff[Y = y] :=
1

∑i∈Itest
δ[yi = y] ∑

i∈Itest

δ[yi = y]|C(xi)|. (8.9)

Similarly, we can define inefficiency conditional on a group of classes. For example, we could
reduce inefficiency on “low-risk” diseases at the expense of higher uncertainty on “high-risk”
conditions. This can be thought of as re-allocating time spent by a doctor towards high-
risk cases. Using ConfTr, we can manipulate group- or class-conditional inefficiency using
a weighted size loss ω · Ω(C(X; τ)) with ω := ω(Y) depending on the ground truth Y in
Equation (8.6).

Next, we consider which classes are actually included in the confidence sets. CP itself does
not enforce any constraints on the composition of the confidence sets. However, with ConfTr,
we can penalize the “confusion” between pairs of classes: for example if two diseases are
frequently confused by doctors, it makes sense to train models that avoid confidence sets that
contain both diseases. To control such cases, we define the coverage confusion matrix as

Σy,k :=
1

|Itest| ∑
i∈Itest

δ[yi = y ∧ k ∈ C(xi)]. (8.10)

The off-diagonals, i.e., Σy,k for y ̸= k, quantify how often class k is included in confidence sets
with true class y. Reducing Σy,k can be accomplished using a positive entry Ly,k > 0 in the
classification loss of Equation (8.8).

Finally, we explicitly want to penalize “overlap” between groups of classes in confidence
sets. For example, we may not want to concurrently include very high-risk conditions among
low-risk ones in confidence sets, to avoid unwanted anxiety or tests for the patient. Letting
K0 ⊎ K1 be two disjoint sets of classes, we define miscoverage as

MisCover0→1 =
1

∑i∈Itest
δ[yi ∈ K0]

∑
i∈Itest

δ[yi ∈ K0 ∧ (∃k ∈ K1 : k ∈ C(xi))]. (8.11)

Reducing MisCover0→1 means avoiding classes K1 being included in confidence sets of classes
K0. Again, we use Ly,k > 0 for y ∈ K0, k ∈ K1 to approach this problem. MisCover1→0 is
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1: CoverageTraining(τ, λ) {fixed threshold}
2: for mini-batch B do
3: C(xi; τ) := SmoothPred(πθ(xi), τ), i∈B
4: LB := ∑i∈B L(Cθ(xi; τ), yi) {not optional}
5: ΩB := ∑i∈B Ω(Cθ(xi; τ))
6: ∆ := ∇θ1/|B|(LB + λΩB)
7: update parameters θ using ∆
8: end for

Algorithm 6: Coverage Training (CoverTr):
As baseline, and compared to ConfTr in
Algorithm 5, CoverTr simplifies training
by not differentiating through the calibra-
tion step and avoiding splitting the batch
B. However, fixing the threshold τ is prob-
lematic and training requires carefully bal-
ancing coverage and size loss, L and Ω.

defined analogously and measures the opposite, i.e., classes K0 being included in confidence
sets of K1.

8.3.4 Conformal Training as Generalization of Coverage Training

As intermediate step towards ConfTr, we can also ignore the calibration step and just
differentiate through the prediction step. This leads to a special case of ConfTr that we call
coverage training (CoverTr) and subsumes concurrent work in [Bel21]. In the following, we
discuss CoverTr as well as [Bel21] in detail and highlight several limitations and challenges
that our ConfTr addresses.

Just differentiating through the prediction step, i.e., Cθ(X; τ), without calibration can be
accomplished by fixing the threshold τ. Then, πθ essentially learns to produce probabilities
that yield “good” confidence sets Cθ(X; τ) for the chosen threshold τ. Following Algorithm 6,
CoverTr computes Cθ(X; τ) on each mini-batch using a fixed τ and smooth thresholding. The
model’s parameters θ are obtained by solving

minθ log (E [L(Cθ(X; τ), Y) + λΩ(Cθ(X; τ))]) . (8.12)

Here, L is the classification loss from Equation (8.8) and Ω the size loss from Equation (8.6). The
classification loss has to ensure that the true label y is in the predicted confidence set Cθ(X; τ)
as the calibration step is missing. That is, in stark contrast to ConfTr, CoverTr strictly requires
both classification and size loss during training. This is because using a fixed threshold
τ yields trivial solutions for both classification and size loss when used in isolation: L is
minimized for Cθ(X; τ) = [K], while Ω is minimized for Cθ(X; τ) = ∅. Thus, balancing both
terms in Equation (8.12) using λ is crucial during training. As with ConfTr, the threshold τ is
re-calibrated at test time to obtain a coverage guarantee. Choosing τ for training, in contrast,
can be difficult: First, τ will likely evolve during training as πθ should get more and more
accurate. Second, the general ballpark of reasonable thresholds τ depends on the dataset,
model as well as CP method and is difficult to fix in advance.

In concurrent work [Bel21], referred to as Bel, the problem with fixing a threshold τ is partly
circumvented by using ThrL during training, i.e., Thr on logits. As the logits are unbounded,
the threshold can be chosen arbitrarily, e.g., τ = 1. As Bel also follows the formulation of
Equation (8.12), the approach can be seen as a special case of CoverTr. However, a less flexible
coverage loss is used during training: Instead of Lclass, the loss is meant to enforce a specific
coverage level (1 − α) on each mini-batch. This is done using a squared loss on coverage:

Lcov :=

[(
1
|B| ∑

i∈B
Cθ,yi(xi; τ)

)
− (1 − α)

]2

(8.13)
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for a mini-batch B of examples. In contrast to Equation (8.12), Lcov is applied per batch
and not per example. For the size loss, [Bel21] uses κ = 0 in Equation (8.6). Besides not
providing much control over the confidence sets, Lcov also encourages coverage (1 − α) instead
of perfect coverage. Nevertheless, this approach is shown to improve inefficiency of ThrL
on various UCI datasets [DG17] using linear logistic regression models. We will show that
this also generalizes – to some extent – to non-linear models and more complex datasets.
Nevertheless, Bel is restricted to ThrL which is outperformed significantly by both Thr and
APS as demonstrated in Figure 8.2. Thus, we will show that ConfTr consistently outperforms
Bel in terms of inefficiency. Finally, the approach cannot be used for any of the studied use
cases in Section 8.3.3.

Using CoverTr with Thr and APS remains problematic. While we found τ ∈ [0.9, 0.99]
for Thr or [−0.1,−0.01] for ThrLP to work reasonably on some datasets, we generally had
difficulties finding a fixed threshold τ that makes CoverTr easily trainable across various
datasets. Moreover, as CoverTr requires balancing coverage L and size loss Ω, hyperparameter
optimization is more complex compared to ConfTr. By extension, these problems also limit
the applicability of Bel. Thus, we would ideally want to re-calibrate the threshold τ regularly,
e.g., after each epoch or model update. Doing calibration on a larger, held-out calibration set,
however, wastes valuable training examples and compute resources. Besides, re-calibration
alone does not provide any useful information for model updates. Thus, ConfTr directly
calibrates on each mini-batch and also differentiates through the calibration step itself to obtain
meaningful gradients.

8.4 Experiments

We present experiments in two parts: After introducing our experimental setup in Section 8.4.1,
we first demonstrate that ConfTr can reduce inefficiency of Thr and APS compared to CP
applied to a baseline model trained using cross-entropy loss separately, see Section 8.4.2. The
main results for this part can be found in Table 8.1, showing that we consistently outperform
concurrent work of [Bel21]. Second, in Section 8.4.3, we show how ConfTr can be used
to “shape” confidence sets, i.e., reduce class-conditional inefficiency for specific (groups of)
classes or coverage confusion of two or more classes, while maintaining the marginal coverage
guarantee. This is impossible using [Bel21] and rather difficult for standard CP.

8.4.1 Experimental Setup

Datasets and Splits: We consider MNIST [LBBH98], EMNIST [CATvS17], Fashion-MNIST
[CATvS17], CIFAR [Kri09] as well as WineQuality [CCA+09] with a fixed split of training,
calibration and test examples. For datasets providing a default training/test split, we take
the last 10% of training examples as calibration set. For EMNIST, we consider a subset of
the “byClass” split that contains 52 = 2 · 26 classes comprised of all lower and upper case
letters. We take the first 122.8k examples split into 98.8k/5.2k/18.8k training/calibration/test
examples. Finally, On WineQuality, we manually created training/calibration/test splits,
roughly matching 70%/10%/20%. We use the “white wine” subset for WineQuality. In order
to create a binary classification problem, wine with quality 6 or higher is categorized as “good
wine” (class 1), and all other wine is categorized as “bad” (class 0) as done in [Bel21].

Models and Training: We consider a linear model on MNIST, 2-layer multi-layer perceptrons
(MLPs) on WineQuality, EMNIST and Fashion-MNIST (256, 128, 64 hidden units, respectively)
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Inefficiency ↓, ConfTr (trained w/ ThrLP), α = 0.01
Thr APS

Dataset Basel. Bel ConfTr +Lclass Basel. ConfTr +Lclass

MNIST 2.23 2.70 2.18 2.11 2.50 2.16 2.14
F-MNIST 2.05 1.90 1.69 1.67 2.36 1.82 1.72
EMNIST 2.66 3.48 2.66 2.49 4.23 2.86 2.87
CIFAR10 2.93 2.93 2.88 2.84 3.30 3.05 2.93
CIFAR100 10.63 10.91 10.78 10.44 16.62 12.99 12.73
WineQuality 1.76 1.77 1.75 1.74 1.79 1.82 1.77

Table 8.1: Main Inefficiency Results, comparing [Bel21] (Bel, trained with ThrL) and ConfTr
(trained with ThrLP) using Thr or APS at test time (with α=0.01). ConfTr results in a consistent
improvement of inefficiency for both Thr and APS. Training with Lclass (L = IK) generally
works slightly better. On CIFAR, the inefficiency reduction is smaller compared to other
datasets as ConfTr is trained on pre-trained ResNet features, and not trained from scratch, see
text. On binary datasets such as WineQuality, Thr and APS perform very similar and ConfTr
is unable to improve significantly.

as well as ResNet-34/50 [HZRS16a] (4 and 64 base channels) on CIFAR10/100. In all cases,
we use ReLU activations [NH10] and batch normalization [IS15b]. We train using stochastic
gradient descent (SGD) with momentum 0.0005 and Nesterov gradients. The baseline models
are trained with cross-entropy loss, while ConfTr follows Algorithm 5. Learning rate and batch
size are optimized alongside the ConfTr hyperparameters using grid search. Except on CIFAR,
see next paragraph, we do not use any data augmentation. Finally, we do not use Platt scaling
[GPSW17] as used in [ABJM21].

Fine-Tuning on CIFAR: On CIFAR10 and CIFAR100, we train base ResNet-34/ResNet-50
models using AutoAugment [CZM+19] and Cutout [DT17] which are then fine-tuned using
ConfTr. We only use 4 base channels for the ResNet-34 and 64 channels for the ResNet-50 as
we focus on the results for CP at test time, without optimizing accuracy of the base model. For
fine-tuning, the last layer is re-initialized and trained using the same data augmentation as
applied for the base model, subject to the random training trials described below.

Random Training and Test Trials: For statistically meaningful results, we perform random
test and training trials. Following common practice [ABJM21], we evaluate CP methods at test
time using 10 random calibration/test splits. Metrics such as coverage and inefficiency are
then empirically evaluated as the average across all test trials. Additionally, and in contrast to
[Bel21], we consider random training trials: After hyperparameter optimization on all training
examples, we train 10 models with the final hyperparameters on a new training set obtained
by sampling the original one with up to 5 replacements. This means that we report, e.g.,
inefficiency as average over a total of 10 · 10 = 100 random training and test trials.

Appendix E.1 provides more details on the experimental setup, including key dataset
statistics, the used hyperparameters on all datasets and how we perform random training trials
when fine-tuning on CIFAR. The importance of performing random training and test trials is
emphasized in Appendix E.2.

8.4.2 Reducing Inefficiency with Conformal Training

In the first part, we focus on the inefficiency reductions of ConfTr (with and without the
classification loss Lclass in Equation (8.8)) in comparison to the baseline and [Bel21] (Bel). After
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MNIST: Ablation for CoverTr and ConfTr
Method Baseline Bel CoverTr ConfTr
Train ThrL Thr APS ThrLP ThrLP ThrLP +Lclass
Test ThrL Thr APS ThrL Thr Thr APS Thr APS Thr APS Thr APS

Ineff 3.57 2.23 2.5 2.73 2.7 6.34 4.86 2.5 2.76 2.18 2.16 2.11 2.14
Acc 92.39 92.39 92.39 81.41 90.01 83.85 88.53 92.63 92.63 90.24 90.21 91.18 91.35

Table 8.2: Ablation for CoverTr and ConfTr: We report inefficiency and accuracy for Bel,
CoverTr and ConfTr considering various CP methods for training and testing. Bel outperforms
the baseline when using ThrL, but does not do so for Thr on MNIST. CoverTr with Thr or
APS during training is challenging, resulting in high inefficiency (mainly due to large variation
among training trials, c.f. Table E.3), justifying our choice of ThrLP for ConfTr. Also CoverTr is
unable to improve over the Thr baseline.

summarizing the possible inefficiency reductions, we also discuss which CP method to use
during training and how ConfTr can be used for ensembles and generalizes to lower α.

Main Results: In Table 8.1, we summarize the inefficiency reductions possible through ConfTr
(trained with ThrLP) in comparison to Bel (trained with ThrL) and the baseline. Bel does not
consistently improve inefficiency on all datasets. Specifically, on MNIST, EMNIST or CIFAR100,
inefficiency actually worsens. Our ConfTr, in contrast, reduces inefficiency consistently, not
only for Thr but also for APS. Here, improvements on CIFAR for Thr are generally less
pronounced. This is likely because we train linear models on top of a pre-trained ResNet
[HZRS16a] where features are not taking into account conformalization at test time. For APS,
in contrast, improvements are still significant. Across all datasets, training with Lclass generally
performs slightly better, especially for datasets with many classes such as EMNIST (K=52) or
CIFAR100 (K=100). Overall, ConfTr yields significant inefficiency reductions, independent of
the CP method used at test time.

Conformal Predictors for Training: In Table 8.1, we specifically use ThrLP during training for
ConfTr, irrespective of the CP method used at test time. This is counter-intuitive at first: when
using, e.g., APS at test time, also using (smooth) APS during training seems more reasonable.
However, we found training with Thr and APS to be difficult. This is highlighted in Table 8.2,
showing inefficiency results for Bel, CoverTr and ConfTr with various CP methods during
training on MNIST. We believe this to be caused by limited gradient flow as both Thr and
APS are defined on the predicted probabilities instead of log-probabilities as used for ThrLP
or in cross-entropy training. While Thr and ThrLP are clearly equivalent, re-formulating
the conformity scores of APS in Equation (8.1) to use log-probabilities is left for future work.
Similarly, Bel is trained using ThrL instead of Thr or APS. While training with Thr works on
MNIST, it does not improve inefficiency. This, however, is due to requiring a fixed threshold
τ=1 during training, which we found difficult to choose on most other datasets. This is due
to the bounded range of the predicted probabilities (πθ,k(x) ∈ [0, 1]) in contrast to logits. We
believe that this contributes to the poor performance of Bel on some datasets. Finally, we
found that Bel or ConfTr do not necessarily recover the accuracy of the baseline. For example,
accuracy of ConfTr without Lclass is roughly 2% lower than the baseline and for Bel with ThrL,
it even reduces from 92.39% to 81.41%. This is despite ConfTr still reducing inefficiency.

Further Results: Table 8.3 includes additional results for ConfTr to “conformalize” ensembles
on CIFAR10 (left) and with lower confidence levels α on EMNIST (right). In the first example,
we consider applying CP to an ensemble of models. Ensemble CP methods such as [YK21]
cannot improve Ineff over the best model of the ensemble, i.e., 3.10 for Thr. Instead, training
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CIRFAR10: Ensemble Results
Test Thr
Method (Models) +MLP +ConfTr

Avg. Ineff 3.10 2.40 2.35
Best Ineff 2.84 2.33 2.30

EMNIST: Confidence Levels

Method Basel. ConfTr
Test Thr

Ineff, α=0.005 4.10 3.37
Ineff, α=0.001 15.73 13.65

Table 8.3: Ensemble Results and Lower Confidence Levels α: Left: “Conformalization” of
ensembles using a 2-layer MLP trained on logits, either normally or using ConfTr. The ensemble
contains 18 models with accuracies in between 75.10 and 82.72%. Training a model on top of
the ensemble clearly outperforms the best model of the ensemble; using ConfTr further boosts
Ineff. Right: The inefficiency improvements of Table 8.1 generalize to lower confidence levels α
on EMNIST, although ConfTr is trained with α=0.01.

an MLP on top of the ensemble’s logits can improve Ineff to 2.40 and additionally using ConfTr
to 2.35. The second example shows that ConfTr, trained for α=0.01, generalizes very well to
significantly smaller confidence levels, e.g., α=0.001 on EMNIST. In fact, the improvement of
ConfTr (without Lclass) in terms of inefficiency is actually more significant for lower confidence
levels. We also found ConfTr to be very stable regarding hyperparameters. Only too small
batch sizes (e.g., |B|=100 on MNIST) prevents convergence. This is likely because of too few
examples (|Bcal|=50) for calibration with α=0.01 during training.

8.4.3 Conformal Training for Applications: Case Studies

For the second part, we focus on ConfTr trained with ThrLP and evaluated using Thr. We
follow Section 8.3.3 and start by reducing class- or group-conditional inefficiency using ConfTr
(without Lclass), before demonstrating reductions in coverage confusion of two or more classes
and avoiding miscoverage between groups of classes (with Lclass). Because this level of control
is not easily possible using Bel or standard CP, we concentrate on ConfTr only:

Shaping Conditional Inefficiency: We use ConfTr to reduce class-conditional inefficiency for
specific classes or a group of classes, as defined in Equation (8.9). In Figure 8.2, inefficiency is
shown to vary widely across classes: On CIFAR10, the more difficult class 3 (“cat”) obtains
higher inefficiency than to the easier class 1 (“automobile”). Thus, in Figure 8.3, we use ω=10
as described in Section 8.3.3 to reduce class- or group-conditional inefficiency. We report the
relative change in percentage, showing that inefficiency reductions of 20% or more are possible
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Figure 8.3: Shaping Class-Conditional Inefficiency on CIFAR: Possible inefficiency reductions,
in percentage change, per class (blue) and the impact on the overall, average inefficiency across
classes (green). Left: Significant inefficiency reductions are possible for all classes on CIFAR10.
Middle: The same strategy applies to groups of classes, e.g., “vehicles” vs “animals”, as well.
Right: Similarly, on CIFAR100, we group classes by their coarse class (20 groups à 5 classes),
allowing inefficiency improvements of more than 30% per individual group.
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Figure 8.4: Controlling Coverage Confusion: Controlling coverage confusion using ConfTr
with Lclass and an increasing penalty Ly,k > 0 on Fashion-MNIST. For classes 4 and 6 (“coat” and
“shirt”), coverage confusion Σy,k and Σk,y decreases significantly (blue and green). However,
confusion of class 4 with class 2 (“pullover”) might increase (gray). ConfTr can also reduce
coverage confusion of multiple pairs of classes (e.g., additionally considering class 2). Instead,
we can also penalize confusion for each pair (y, k), k ∈ [K], e.g., y= 6. Here, Ly,k > 0, but
Ly,k = 0, i.e., Cover confusion is not reduced symmetrically.

for many classes, including “cat” on CIFAR10 (left, blue). This is also possible for two groups of
classes, “vehicles” vs. “animals” (middle). However, these reductions usually come at the cost
of a slight increase in average inefficiency across all classes (green). On CIFAR100, we consider
20 coarse classes, each containing 5 of the 100 classes (right). Again, significant inefficiency
reductions per coarse class are possible. These observations generalize to all other considered
datasets as well as different class groups.

Avoiding Coverage Confusion: Next, we use ConfTr to manipulate the coverage confusion
matrix as defined in Equation (8.10). Specifically, we intend to reduce coverage confusion
of selected sets of classes. Using a non-zero entry Ly,k > 0, y ̸= k in Lclass, as described in
Section 8.3.3, Figure 8.4 (left) shows that coverage confusion can be reduced significantly
for large enough Ly,k on Fashion-MNIST: Considering classes 4 and 6 (“coat” and “shirt”)
confusion can be reduced by roughly 1%. However, as accuracy stays roughly the same and
coverage is guaranteed, this comes at the cost of increasing coverage confusion for other class
pairs, e.g., 2 (“pullover”) and 4. ConfTr can also be used to reduce coverage confusion of
multiple class pairs (middle) or a whole row in the coverage confusion matrix Σy,k with fixed y

CIFAR10: K0= 3 (“cat”) vs. K1= Others
CIFAR100: K0= “human-made vs. K1= “natural”

CIFAR10 CIFAR100
MisCover ↓ MisCover ↓

Method Ineff 0→1 1→0 Ineff 0→1 1→0

ConfTr 2.84 98.92 36.52 10.44 40.09 29.6
LK0,K1=1 2.89 91.60 34.74 16.50 15.77 70.26
LK1,K0=1 2.92 97.36 26.43 11.35 45.37 17.56
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Figure 8.5: Left: Reducing Miscoverage: ConfTr allow reducing miscoverage on CIFAR. We
consider K0={3} (i.e., “cat”) vs. all other classes on CIFAR10 and “human-made” vs. “natural”
on CIFAR100 (|K0|=35, |K1|=65, right). On CIFAR10, both MisCover0→1 and MisCover1→1 can
be reduced significantly without large impact on inefficiency. For CIFAR100, in contrast, Ineff
increases more significantly. Right: Binary Class-Conditional Inefficiency and Coverage: We
plot inefficiency by class (top) and coverage confusion (bottom) on WineQuality. We can reduce
inefficiency for class 0, the minority class, at the expense of higher inefficiency for class 1 and
boost class-conditional coverage for class 0.
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and y ̸=k∈[K]. Figure 8.4 (right) shows the results for class 6: coverage confusion with, e.g.,
classes 0 (“t-shirt”), 2 or 4 (blue, green and violet) is reduced roughly 0.5% each at the cost of
increased confusion of classes 2 and 4 (in gray). These experiments can be reproduced on other
datasets, e.g., MNIST or CIFAR10 in Appendix E.7.

Reducing Miscoverage: We can also address unwanted “overlap” of two groups of classes
using ConfTr and Lclass. In Figure 8.5 (left) we explicitly measure miscoverage as defined
in Equation (8.11). First, on CIFAR10, we consider a singleton group K0={3} (“cat”) and
K1=[K] \ {3}: The ConfTr baseline MisCover0→1 tells us that 98.92% of confidence sets with
true class 3 also contain other classes. Given an average inefficiency of 2.84 this is reasonable.
Using L3,k = 1, k ̸= 3, this can be reduced to 91.6%. Vice-versa, the fraction of confidence sets
of class y ̸=3 containing class 3 can be reduced from 36.52% to 26.43%. On CIFAR100, this also
allows reducing overlap between “human-made” (35 classes) and “natural” (65 classes) things,
e.g., MisCover0→1 reduces from 40.09% to 15.77%, at the cost of a slight increase in inefficiency.
See Appendix E.8 for additional results.

Binary Datasets: Finally, in Figure 8.5 (right), we illustrate that the above conclusions gener-
alize to the binary case: On WineQuality, we can control inefficiency of class 0 (“bad wine”,
minority class with ∼37% of examples) at the expense of increased inefficiency for class 1
(“good wine”, top). Similarly, we can (empirically) improve class-conditional coverage for
class 0 (bottom) or manipulate coverage confusion of both classes.

8.5 Conclusion

We introduced conformal training (ConfTr), a novel method to train conformal predictors
end-to-end with the underlying model. This addresses a major limitation of conformal prediction
(CP) in practice: The model is fixed, leaving CP little to no control over the predicted confidence
sets. In thorough experiments, we demonstrated that ConfTr can improve inefficiency of state-
of-the-art CP methods such as Thr [SLW19] or APS [RSC20]. More importantly, motivated by
medical diagnosis, we highlighted the ability of ConfTr to manipulate the predicted confidence
sets in various ways. First, ConfTr can “shape” the class-conditional inefficiency distribution,
i.e., reduce inefficiency on specific classes at the cost of higher inefficiency for others. Second,
ConfTr allows us to control the coverage-confusion matrix by, e.g., reducing the probability of
including classes other than the ground truth in confidence sets. Finally, this can be extended
to explicitly reduce “overlap” between groups of classes in the predicted confidence sets. In all
cases, ConfTr does not lose the (marginal) coverage guarantee provided by CP.
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Recent advances in deep learning enabled an astounding range of applications in com-
puter vision and beyond. More and more of these concern high-stakes and security-
critical applications including, e.g., autonomous driving or medical diagnosis among

many others, where mistakes can have severe impact on human lives. These applications
also come with their specific constraints for deployment, including space, time and power
limitations, which are typically tackled using special-purpose hardware, so-called accelerators.
This motivates a shift in evaluation from looking purely at accuracy to additionally considering
robustness on manipulated or unexpected inputs and after quantization and deployment
on potentially faulty hardware. Moreover, reliable uncertainty estimates are crucial to make
informed decisions in such settings.

9.1 Key Insights and Conclusions

We addressed robustness and uncertainty in deep learning along three complementary research
directions: First, in Part II, we improved our understanding of adversarial examples and adversarial
training. We found that adversarial examples can easily fool models into incorrect classifications
by leaving the underlying manifold of the data. However, the observed robustness-accuracy
trade-off of adversarial training is not inherent and can be attributed to higher sample com-
plexity. Moreover, when encouraging flatness in the robust loss landscape, adversarial training
is very effective in improving adversarial robustness while avoiding severe robust overfitting.
Second, in Part III, we considered robustness against bit errors in quantized weights in the context
of deep neural network accelerators. Improving robustness not only improves security against
attacks on the accelerator’s memory but also allows reducing the memory’s voltage. Usually,
this leads to severe accuracy drops due to memory faults causing bit errors. Using our robust
quantization, weight clipping regularization and random bit error training, the network is
able to endure high bit error rates, allowing significant energy savings through low-voltage
operation. Third, in Part IV, we contributed towards improving robustness and uncertainty
estimation. Our confidence-calibrated adversarial training improves adversarial and corruption
robustness as well as out-of-distribution detection by encouraging low-confidence predictions
on perturbed inputs. In conformal training, in contrast, a conformal predictor that yields sets of
classes is trained jointly with the underlying model. These confidence sets provide an intuitive
notion of uncertainty and conformal training allows optimizing application-specific losses
directly defined on the confidence sets while the performance guarantee obtained through
conformal prediction is preserved.

Besides our work on robustness, Part I also considered the problem of 3D shape completion
of noisy point clouds as, e.g., obtained from single LiDAR views in autonomous driving. Un-
fortunately, ground truth shapes are extremely expensive to obtain which is why we proposed
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a weakly-supervised approach based on recent 3D deep learning techniques. Specifically, we
train a shape prior on synthetic shapes and learn to fit these to the actual observations.

In the following, we revisit the contributions of the individual chapters in more detail,
before discussing future work in Section 9.2.

Part I, Deep Learning for 3D Shape Completion: In this first part, specifically Chapter 3, we
introduced a new, weakly-supervised approach to 3D shape completion from noisy point clouds
observations. Specifically, we leveraged a 3D variational auto-encoder to learn a latent space of
shapes from synthetic data containing one or multiple object categories. Then, we formulated
3D shape completion as a maximum likelihood problem, which we amortized by essentially
training a new encoder for the shape model. This is possible without access to ground truth
shapes allowing to train our method on real-world datasets obtained from LiDAR sensors on
autonomous vehicles or Kinect sensors in indoor robotics. Compared to related data-driven
approaches, this allows fast inference at test time and, in contrast to other learning-based
approaches, we do not require full supervision, resulting in better generalization.

Part II, Understanding Adversarial Examples and Training: In the second part, we focused
on the robustness of deep neural networks against adversarial examples. Specifically, we
studied why such adversarial perturbations exist and addressed both the robustness-accuracy
trade-off and the robust overfitting phenomenon in adversarial training.

In Chapter 4, we studied adversarial examples in the context of the underlying, low-
dimensional data manifold. Specifically, we showed that regular adversarial examples leave
this manifold in an almost orthogonal direction. Furthermore, robustness against such “off-
manifold” adversarial examples and generalization are not inherently contradictory. Instead, the
robustness-accuracy trade-off can be explained by adversarial training requiring significantly
more training data. We also constrained adversarial examples to the manifold, showing that
robustness against such on-manifold adversarial examples is related to (clean) generalization.

In Chapter 5, we addressed the phenomenon of robust overfitting in adversarial training.
To this end, we introduced two measures to quantify flatness in the robust loss landscape w.r.t.
weight perturbations. This allowed us to show that robust overfitting is caused by converging to
sharp minima. In fact, we revealed a clear relationship between robust flatness and adversarial
robustness. That is, encouraging flatness throughout training avoids robust overfitting and is
shown to improve overall adversarial robustness.

Part III, Improving Weight Robustness: In Chapter 6, we studied robustness against random
and adversarial bit errors in (quantized) weights. This is of relevance in the context of deep
neural network accelerators. Random bit errors occur when operating the accelerator’s memory
below its rated voltage in order to save energy. Combining a robust quantization scheme, with
appropriate regularization and injecting bit errors during training, we were able to improve
robustness considerably. In contrast to previous work, our approach generalizes well across
different chips with their specific bit error patterns, various bit error rates and bit widths
used for quantization. Adversarial bit errors, in contrast, are maliciously introduced through
hardware- or software based attacks on the memory. Here, we propose a novel attack that
is more efficient and effective than previous ones. Used during training, our attack allows
improving adversarial bit error robustness which contributes towards more secure accelerators.

Part IV, Improving Adversarial Robustness and Uncertainty Estimation: In the fourth
part, we considered adversarial robustness in the context of uncertainty estimation. This way,
we addressed the inability of adversarial training to generalize robustness to unseen types
of adversarial examples as well as its robustness-accuracy trade-off. Furthermore, as none
of these approaches provide any guarantees beyond good empirical performance, we also
considered conformal prediction. While conformal prediction is able to provide a guarantee on
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the true label being included in predicted confidence sets, it is generally used as a post-training
calibration step. In order to allow wide-spread adoption of conformal methods in deep learning,
we worked towards integrating them better into nowadays training pipelines.

In Chapter 7, we proposed confidence-calibrated adversarial training which is able to
generalize adversarial robustness to adversarial examples not seen during training as well as
corrupted and out-of-distribution examples. To this end, training biases the model towards low-
confidence predictions on adversarial examples. In practice, the model learns to extrapolate this
behavior such that adversarial examples can be rejected based on their confidence. Thereby, it
also improves accuracy significantly compared to standard adversarial training. We thoroughly
evaluated our approach using multiple adaptive adversarial attacks and an adapted confidence-
thresholded robust error.

In Chapter 8, we introduced conformal training, a new method to train conformal predictors
and deep neural networks end-to-end. This addresses a significant limitation of conformal
prediction which is generally applied after training. However, the training objective, e.g.,
cross-entropy loss, is not necessarily ideal for efficient conformal prediction. Moreover, the
conformal predictor has little to no control over the composition of the predicted confidence
sets. We showed that conformal training can reduce uncertainty, i.e., average confidence set
size, significantly and allows optimizing application-specific losses defined directly on the
confidence sets. This is possible while preserving the statistical guarantee of the conformal
predictor by re-calibrating at test time.

9.2 Future Directions

In the following, we provide a discussion of potential future work regarding the main topics of
this thesis. For example, we addressed various problems in adversarial robustness, including
our understanding of adversarial examples and adversarial training. However, these and
related problems remain difficult to solve:

Generative Models for Robustness: Since our work in Chapter 4, there has been significant
progress in deep generative modeling. Recently, for example, generative adversarial networks
[GPM+14b, RMC16, SGZ+16, ACB17], flow-based methods [RM15b, KSW16] or diffusion-
based methods [SWMG15, SE19, HJA20, ND21, DN21] obtain impressive results. This also
means that better low-dimensional representations and manifolds can be learned. As a result,
there has been an increased interest in approaches similar to our on-manifold adversarial
training, often subsumed in the larger context of adversarial data augmentation: [GQH+20]
uses this idea to improve robustness against more realistic, real-world transformations of face
images, while [PBZ+20] improve uncertainty estimation. Nevertheless, approximating the true
manifold remains challenging and is the most significant limiting factor in larger-scale use of
these techniques to boost generalization and robustness.

Robustness-Accuracy Trade-Off: While various approaches [BGH19, WCG+20], including
ours from Chapter 7, improve or allow more control over the robustness-accuracy trade-off,
adversarially trained models still lack state-of-the-art accuracy. Moreover, the trade-off also
persists in provable defenses, e.g., [CRK19, SSY+20] or [WK18, ZCX+20]. Even significantly
deeper models, with additional unlabeled training data [GQU+20], yield a significant reduction
of clean accuracy. However, adversarial training against adversarial patches, for examples,
does not incur a robustness-accuracy trade-off [RSS20]. These observations further support the
hypothesis that conventional methods might not be able to address this problem, as suggested
in Proposition 2, and re-thinking our notion of robustness might be beneficial.
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Robust Overfitting in Adversarial Training: While [WXW20b, SSJF21] as well as our work
in Chapter 5 try to address robust overfitting, it remains a significant obstacle in adversarial
robustness. For example, to date, early stopping is still indispensable [RWK20]. While
optimizing flatness is receiving much attention, also regarding clean generalization [FKMN21],
it cannot avoid robust overfitting altogether [WXW20b]. These results indicate that additional
factors besides flatness may be necessary for good robust generalization without overfitting. In
clean generalization, [NBMS17] suggests that an additional measure of model complexity is
required. This notion, however, has not been explored for robust generalization yet.

Robustness Against Many Threat Models: Besides our work in Chapter 7, several publica-
tions [TB19, MWK20, CH21b] address robustness against multiple threat models. However, this
involves trade-offs: robustness against individual threat models reduces in order to generalize
across threat models. Furthermore, these threat models are usually closely related, e.g., Lp
for p ∈ {∞, 2, 1}. We believe that robustness against a wider range of threat models is crucial
for many applications, including adversarial patches, adversarial transformations, or semantic
adversarial examples. Fine-tuning robust models as in [CH21b], could be a reasonable first
step for obtaining robustness against many, diverse threat models.

Towards Practically Relevant Threat Models: While Lp-constrained adversarial examples
are studied extensively, increased work on corrupted examples, adversarial patches, or trans-
formations, etc. shows a trend to move towards more realistic and practically relevant threat
models. Often, simple transformations, overlays, patches, filters or other accessible, off-the-shelf
manipulation work well in practice, e.g., for circumventing automatic content moderation
in social media. To this end, [WK21], for example, tries to learn more realistic perturbations.
However, such settings are significantly more difficult to develop standard benchmarks for,
which we believe to be essential for making progress.

Computationally-Limited Adversarial Robustness: Recent benchmarks demonstrate that
proper adversarial robustness evaluation is computationally expensive. AutoAttack (AA)
[CH20c] uses an ensemble of attacks, each with several hundreds if not thousands of iterations.
Adaptive AA [YBTV21] additionally searches for appropriate objectives to be optimized.
Against our method from Chapter 7, Adaptive AA additionally requires optimizing eight
instead of only three attacks, increasing runtime from 108 to 205 minutes. For state-of-the-art
Wide ResNets [ZK16], runtime can be even higher. These results indicate that pure worst-
case adversarial robustness is an oversimplification. We believe that a shift towards a more
fine-grained hierarchy of threat models by limiting the attackers computational resources is
necessary as making it difficult “enough” for attackers could be sufficient for many applications.

Various parts of this thesis also considered robustness of deep neural networks against changes
in their weights, e.g., in the context of accelerators that introduce bit errors in quantized weights
or in order to measure flatness in the robust loss landscape. In the following, we provide an
outlook on promising future work:

Understanding and Improving (Robust) Flatness Measures: In Chapter 5, we found that
properly measuring flatness is challenging. For example, [WXW20b, FKMN21] suggest that
optimizing worst-case flatness during training is required. However, we showed that average-
case flatness is better for predicting good generalization. We also found that worst-case flatness
is extremely difficult to estimate in practice, i.e., finding worst-case weight perturbations seems
to be a challenging optimization problem. Due to the success of actively encouraging flatness
[WXW20b, FKMN21], however, it seems critical to better understand, compute and compare
these measures across varying models.
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Robust Network Quantization: In Chapter 6, we also focused on proper quantization of
neural networks for improving robustness against bit errors. Surprisingly, implementation
details can have a significant impact on robustness, while being negligible for good accuracy.
Despite extensive work on network quantization [Guo18], it is generally viewed solely in
the context of its approximation quality, i.e., quantization errors. As bit error robustness is
important for deployment, we think that future work should not only focus on developing
more robust quantization schemes but also work on discussing the underlying theory.

Bit Error Robustness on Real Accelerators: While Chapter 6 provides empirical results on
profiled bit errors, obtained from real chips used in [CSC+19], there still remains a gap to
actually measuring robustness on real chips. For example, it is impossible to know the exact
memory layout and data movement in advance [WES19, YCES17]. This also makes it difficult
to estimate obtained energy savings or evaluate bit errors in activations. Furthermore, profiling
is very expensive and usually constrained to few memory arrays per chip. We believe that
standardized and more realistic benchmarks are required for this problem to be addressed by
a wider community within (robust) deep learning.

Weight Robustness for Different Hardware Architectures: Apart from digital accelera-
tors, analog hardware is receiving increased attention [SHES17, HGP19]. In analog devices,
values are not represented as bit patterns but mapped to continuous, physical quantities
such as voltage or current. This is often combined with in-memory computation [HGP19].
This has the potential to reduce data movement and energy consumption significantly, but
leads to inherently noisy operations. In practice, this can be modeled by perturbed weights
[ZKMW20, ICZ+20, FQ21, ICZ+21]. Similarly, non-volatile memory is used, e.g., for binary
neural networks [YBG+21]. But the reliability of the memory depends not only on voltage but
also on temperature. In all of these settings, robust deep neural networks play a crucial role
for energy-efficient inference. However, these problems are, to the best of our knowledge, not
receiving sufficient attention, especially outside the hardware communities.

Batch Normalization: While batch normalization [IS15a] is still poorly understood [BGSW18,
STIM18], it is ubiquitous in deep learning. More importantly, its relationship to adversar-
ial or corruption robustness is largely unclear [GGT+19, SWGG20, BZK20, BZKK21]. In
Chapter 8, we additionally found that batch normalization reduces robustness to weight
perturbations significantly. Instead, we resorted to group normalization [WH18], suggesting
that the batch/dataset statistics play a key role in robustness settings. Moreover, it remains
unclear how to properly adjust the batch normalization statistics when weights are subject to
perturbations. Properly evaluating and understanding batch normalization in these settings
could have tremendous impact on a wide range of architectures relying on it.

Finally, we also made contributions in the context of conformal prediction. Our conformal
training integrates conformal predictors with nowadays deep learning pipelines, opening up
many interesting directions of future work:

Addressing Limitations of Conformal Training: Besides Chapter 8, there is concurrent work
[Bel20, Bel21, BMW+22] aiming to integrate conformal prediction into training. However, these
approaches have several drawbacks compared to conformal training. For example, [Bel21] does
not consider the calibration step during training. In contrast, [BMW+22] expresses the actual
calibration step as learning problem. In the end, both require to optimize a combination of
efficiency and coverage loss. All approaches, including ours, are limited in terms of model
complexity. While we are able to train deeper models than [Bel21, BMW+22], we also fine-
tuned pre-trained models on CIFAR [Kri09]. However, enabling conformal training from scratch
on large-sale datasets is key prerequisite for making conformal prediction more accessible.
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Conformal Prediction with Application-Specific Guarantees: Standard conformal prediction
has limited control over the exact composition of confidence sets. We addressed this problem
by allowing to (empirically) optimize application-specific losses on the confidence sets. In
contrast to conformal prediction, [BAL+21] is able to provide guarantees on arbitrary losses,
i.e., the coverage guarantee is replaced with a probabilistic upper bound on a loss. This allows
more flexibility regarding applications such that integrating conformal training with [BAL+21]
is a natural next step. Initial experiments show that the calibration and prediction steps of
[BAL+21] can be made differentiable, even if both become computationally more expensive
compared to standard conformal prediction.

Conformal Prediction in Adversarial Settings: The recent interest in conformal prediction
also sparked some early work on adversarially robust conformal prediction [GWDR22]. While
the considered threat models are very limited compared to adversarial training, this opens
a novel direction of research towards provable robustness. Where an empirical robustness
of, e.g., 90% or above on CIFAR is impossible to obtain with current methods, conformal
prediction could provide user-specified adversarial coverage by allowing to predict multiple
classes. However, [GWDR22] also shows that coverage guarantees on adversarial examples are
very difficult to obtain. Nevertheless, we think that combining high coverage guarantee on
unperturbed examples with high empirical coverage on adversarial examples can already be
useful in many applications.
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ADisentangling Adversarial Robustness and
Generalization

A.1 On-Manifold Adversarial Examples

In Figure A.1, we show additional examples of regular and on-manifold adversarial examples,
complementing the examples in Figure 4.3. On FONTS, both using the true and the approxi-
mated manifold, on-manifold adversarial examples reflect the underlying invariances of the
data, i.e., the transformations employed in the generation process. This is in contrast to the
corresponding regular adversarial examples and their (seemingly) random noise patterns. We
note that regular and on-manifold adversarial examples can best be distinguished based on
their difference to the original test image – although both are perceptually close to the original
image. Similar observations hold on MNIST and Fashion. However, especially on Fashion and
CelebA, the discrepancy between true images and on-manifold adversarial examples becomes
visible. This is the “cost” of approximating the underlying manifold using VAE-GANs.

A.2 L2 and Transfer Attacks

In Section 4.2, we primarily focus on the L∞ white-box attack by Madry et al. [MMS+18].
Here, we further consider the L2 variant, which, given image x with label y and classifier f ,
maximizes the cross-entropy loss, i.e.,

maxδ L( f (x + δ), y) s.t. ∥δ∥2 ≤ ϵ, x̃i ∈ [0, 1], (A.1)
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Figure A.1: Additional Qualitative Examples: Regular and on-manifold adversarial examples
on FONTS, MNIST, Fashion and CelebA. On FONTS, the manifold is known; on the other
datasets, class manifolds have been approximated using VAE-GANs. Notice that the crafted
on-manifold adversarial examples correspond to meaningful manipulations of the image – as
long as the learned class-manifolds are good approximations. This can best be seen considering
the (normalized) difference images (or the magnitude thereof for CelebA).
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Figure A.2: Results for L2 Adversarial Examples: L2 attacks of Madry et al. [MMS+18] and
Carlini and Wagner [CW17b] on FONTS, MNIST and Fashion. In all cases, we plot regular
or on-manifold success rate against test error. Independent of the attack, we can confirm
that on-manifold robustness is strongly related to generalization, while regular robustness is
independent of generalization.

to obtain an adversarial example x̃ = x + δ. We use ϵ = 1.5 for regular adversarial examples
and ϵ = 0.3 for on-manifold adversarial examples. For optimization, we utilize projected
ADAM [KB15b]: after each iteration, x̃ is projected onto the L2-ball of radius ϵ using

x̃′ = x̃ · max
(

1,
ϵ

∥x̃∥2

)
(A.2)

and clipped to [0, 1]. We use a learning rate of 0.005 and we note that ADAM includes
momentum, as suggested in [DLP+18]. Optimization stops as soon as the label changes, or
runs for a maximum of 40 iterations. The perturbation δ is initialized randomly as follows:

δ = uϵ
δ′

∥δ′∥2
, δ′ ∼ N (0, I), u ∼ U(0, 1). (A.3)

Here, U(0, 1) refers to the uniform distribution over [0, 1]. This results in δ being in the ϵ-ball
and uniformly distributed over distance and direction. Note that this is in contrast to sampling
uniformly w.r.t. the volume of the ϵ-ball. The same procedure applies to the L∞ attack where
the projection onto the ϵ-ball is achieved by clipping. The attack can also be used to obtain
on-manifold adversarial examples, as described in Section 4.2.3. Then, optimization is done
over the perturbation ζ in latent space, with constraint ∥ζ∥2 ≤ η. The adversarial example is
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Figure A.3: Off-Manifold Carlini+Wagner
Adversarial Examples: Distance of Car-
lini+Wagner adversarial examples to the true,
on FONTS (left), or approximated, on MNIST
(right), manifold. As before, we show normal-
ized histograms of the L2 distance of adver-
sarial examples to their projections onto the
manifold.

obtained as x̃ = dec(z + ζ) with z being the latent code of image x and dec being the true or
approximated generative model, i.e., decoder.

We also consider the L2 white box attack by Carlini and Wagner [CW17b]. Instead of
directly maximizing the training loss, Carlini and Wagner propose to use a surrogate objective
on the classifier’s logits ly:

F(x̃, y) = max(−κ, ly(x̃)− maxy′ ̸=y ly′(x̃)). (A.4)

Compared to the training loss, which might be close to zero for a well-trained network, F is
argued to provide more useful gradients [CW17b]. Then,

minδ F(x + δ, y) + λ∥δ∥2 s.t. x̃i ∈ [0, 1] (A.5)

is minimized by reparameterizing δ in terms of δ = 1/2(tanh(ω) + 1)− x in order to ensure the
image-constraint, i.e., x̃i ∈ [0, 1]. In practice, we empirically chose κ = 1.5, use 120 iterations of
ADAM [KB15b] with learning rate 0.005 and λ = 1. Again, this attack can be used to obtain
on-manifold adversarial examples, as well.

As black-box attack we transfer L∞ Madry adversarial examples from a held out model,
as previously done in [PMG+17, LCLS17, XZZ+19]. The held out transfer model is trained
normally, i.e., without any data augmentation or adversarial training, on 10k training images
for 20 epochs. The success rate of these transfer attacks is computed with respect to images
that are correctly classified by both the transfer model and the target model.

Figure A.2 shows results on FONTS, MNIST and Fashion considering both L2 attacks, i.e.,
Madry et al. [MMS+18] and Carlini and Wagner [CW17b]. In contrast to the L∞ Madry attack,
we observe generally lower success rates. Nevertheless, we can observe a clear relationship
between on-manifold success rate and test error. The exact form of this relationship, however,
depends on the attack. For the L2 Madry attack, the relationships seems to be mostly linear
(especially on FONTS and MNIST), while it seems non-linear for the L2 Carlini and Wagner
attack. Furthermore, the independence of regular robustness and generalization can be
confirmed, i.e., regular success rate is roughly constant when test error varies – again, with the
exception of regular adversarial training. Finally, for completeness, in Figure A.3, we illustrate
that the Carlini+Wagner L2 adversarial examples also leave the manifold.

In Figure A.4, we also consider the black-box case, i.e., without access to the target model.
While both observations from above can be confirmed, especially on FONTS and MNIST,
the results are significantly less pronounced. This is mainly due to the significantly lower
success rate of transfer attacks – both regarding regular and on-manifold adversarial examples.
Especially on MNIST and Fashion, success rate may reduce from previously 80% or higher
to 10% or lower. This might also explain the high variance on MNIST and Fashion regarding
regular robustness. Overall, we demonstrate that our claims can be confirmed in both white-
and black-box settings as well as using different attacks [CW17b, MMS+18] and norms.



230 chapter a. disentangling adversarial robustness and generalization

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

Test Error

F
O
N
T
S

O
n
-L
ea
rn
ed
-M

a
n
if
o
ld

S
u
cc
es
s
R
a
te

0 0.2 0.4

0

0.5

1

Test Error

O
ff

-M
an

if
ol

d
S

u
cc

es
s

R
at

e

0 0.05 0.1
0

0.002

0.004

Test Error

E
M
N
IS
T

O
n
-L
ea
rn
ed
-M

an
if
ol
d

S
u
cc
es
s
R
at
e

0 0.02 0.04 0.06

0

0.02

0.04

0.06

0.08

Test Error

O
ff

-M
an

if
ol

d
S

u
cc

es
s

R
at

e

Normal Training Regular Adversarial Training
Data Augmentation On-True-Manifold Adversarial Training
Adversarial Transformation Training
On-Learned-Manifold Adversarial Training

Figure A.4: Results with Transfer Attacks on FONTS, MNIST and Fashion. We show on-
manifold (left) and regular success rate (right) plotted against test error. In spite of significantly
lower success rates, transfer attacks also confirm the strong relationship between on-manifold
success rate and test error, while – at least on FONTS and MNIST– regular success rate is
independent of test error.

A.3 Influence of Network Architecture

Also in relation to the discussion in Section 4.2.4 and 4.2.5, Figure A.5 shows results on
FONTS, MNIST and Fashion using multi-layer perceptrons instead of convolutional neural
networks. Specifically, we consider a network with 4 hidden layers, using 128 hidden units
each. Each layer is followed by ReLU activations and batch normalization [IS15b]; training
strategy, however, remains unchanged. Both of our claims, i.e., that on-manifold robustness
is essentially generalization, but regular robustness is independent of generalization, can be
confirmed. Especially regarding the latter, results are more pronounced using multi-layer
perceptrons: except for regular adversarial training, success rate stays nearly constant at 100%
irrespective of test error. Overall, these results suggest that our claims generally hold for the
class of (deep) neural networks, irrespective of architectural details.

In order to further validate our claims, we also consider variants of two widely used,
state-of-the-art architectures: ResNet-13 [HZRS16a] and VGG [SZ15]. For VGG, however, we
removed the included dropout layers. The main reason is that randomization might influence
robustness, e.g., see [ACW18]. Additionally, we only use 2 stages of model A, see [SZ15], in
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Figure A.5: Results for Multi-Layer Perceptrons: Experiments with multilayer-perceptrons
on FONTS, MNIST and Fashion. We plot on-manifold (left) or regular success rate (right)
against test error. On-manifold robustness is strongly related to generalization, while regular
robustness seems mostly independent of generalization.
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Figure A.6: Results with ResNet-13 and VGG: Experiments with ResNet-13 (left) and VGG
(right) on FONTS and Fashion. We plot on-manifold (left) or regular success rate (right) against
test error. As in Figure A.5, our claims can be confirmed for these network architectures, as
well.

order to deal with the significantly lower resolution of 28 × 28 on FONTS, MNIST and Fashion.
Finally, we only use 1024 hidden units in the fully connected layers. Figure A.6 shows results
on FONTS and Fashion (which are significantly more difficult than MNIST) confirming our
claims.

A.4 Baselines and Adversarial Training Variants

In Section 4.2, we consider the adversarial training variant by Madry et al. [MMS+18], i.e.,

minw

N

∑
n=1

max∥δ∥∞≤ϵ L( f (xn + δ; w), yn), (A.6)

where f is the classifier with weights w, L is the cross-entropy loss and xn, yn are training
images and labels. In contrast to [MMS+18], we train on 50% clean and 50% adversarial
examples [SZS+14, GSS15]. The inner optimization problem is run for full 40 iterations without
early stopping. Here, we additionally consider the full variant, i.e., training on 100% adversarial
examples, and the weak variant, i.e., stopping the inner optimization problem as soon as the
label changes. Additionally, we consider random perturbations as baseline, i.e., choosing
the perturbations δ uniformly at random without any optimization. The same variants and
baselines apply to on-manifold adversarial training and adversarial transformation training.

In Section 4.2.6, we observed that different training strategies might exhibit different
robustness-generalization characteristics. For example, regular adversarial training renders the
learning problem harder: in addition to the actual task, the network has to learn (seemingly)
random but adversarial noise directions leaving the manifold. In Figure A.7, we first show
that training on randomly perturbed examples (instead of adversarially perturbed ones) is
not effective, neither in image space nor in latent space. This result highlights the difference
between random and adversarial noise, as also discussed in [FMDF16]. For regular adversarial
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Figure A.7: Various Adversarial Training Variants and baselines on FONTS and MNIST. For
adversarial training, we consider the full variant, i.e., training on 100% adversarial examples,
and the weak variant, i.e., stopping the inner optimization problem of off-manifold adversarial
training as soon as the first adversarial example is found. For regular adversarial training, the
strength of the adversary determines the robustness-generalization trade-off. For on-manifold
adversarial training, the ideal strength depends on the approximation quality of the used
VAE-GANs.

training, the strength of the adversary primarily influences the robustness-generalization trade-
off. For example, the weak variant increases generalization while reducing robustness. Note
that this effect also depends on the difficulty of the task, e.g., FONTS is considerably more
difficult than MNIST. For on-manifold adversarial training, in contrast, the different variants
have very little effect; generalization is influenced only slightly, while regular robustness is – as
expected – not influenced.



BRelating Adversarially Robust Generalization
to Flat Minima

B.1 Visualization Details and Discussion

Discussion of [LXTG18]: Originally, [LXTG18] uses a per-filter normalization instead of our
per-layer normalization. Specifically, this means

ν̂(l,i) =
ν(l)

∥ν(l,i)∥2
∥w(l,i)∥2 for layer l, filter i, (B.1)

instead of the normalization used in Section 5.2.2:

ν̂(i) =
ν(l)

∥ν(l)∥2
∥w(l)∥2 for layer l. (B.2)

Furthermore, [LXTG18] does not consider changes in the biases or batch normalization parame-
ters. Instead, we also normalize the biases as above and take them into account for visualization
(but not the batch normalization parameters). More importantly, [LXTG18] considers only
(clean) Loss, while we focus on RLoss. Figure B.1 shows that the difference between filter-wise
and layer-wise normalization has little impact in visually judging flatness. Generally, filter-wise
normalization makes the RLoss landscape “look” flatter. However, this is mainly because
the absolute step size, i.e., ∥ν̂∥2, is smaller compared to layer-wise normalization: for our
AT baseline, this is (on average) ∥ν̂∥2 ≈ 33.13 for layer-wise and ∥ν̂∥2 ≈ 21.49 for filter-wise
normalization.

B.2 Ablation for Flatness Measures

Standard Deviation in Average-Case Flatness: In Figure B.2 (left), the x-axis plots the
standard deviation in our average-case flatness measure (in RLoss). Note that the standard
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Figure B.1: Filter-Wise Normalization: Com-
pared to the RLoss landscape visualizations in
Figure 5.4, using per-layer normalization, we fol-
low [LXTG18] and use filter-wise normalization
in Equation (B.1). Again, we plot mean RLoss
across 10 random directions. However, this does
not change results significantly, flatness remains
difficult to judge and compare in an objective way.
Filter-wise normalization, however, “looks” gener-
ally flatter.
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Figure B.2: Left: Standard Deviation of Average-Case Flatness: We plot RLoss (y-axis) against
the standard deviation (std) in our average-case flatness measure (x-axis). Note that the
standard-deviation is due to the random weight perturbations ν in the average-case flatness
computation. Interestingly, more robust methods are not only flatter, but our average-case
flatness measure also has lower standard deviation. Middle: Worst-Case Flatness in (Clean)
Loss: As worst-case flatness in the clean Loss landscape also mirrors robust overfitting, we
plot RLoss against worst-case flatness in Loss. Even though flatness is measured considering
clean Loss, many methods improving robustness (i.e., lower RLoss) exhibit surprisingly good
flatness. Right: Early Stopping for all Models: RLoss vs. average-case flatness for all models
where early stopping improves adversarial robustness. For example, this is not the case for
AutoAugment or AT with unlabeled examples. Across all models, early stopping improves
both robustness and flatness. For clarity we provide a zoomed-in plot for the lower left corner.

deviation originates in the random samples ν used to calculate average-case flatness. First of
all, standard deviation tends to be small (i.e., ≤ 0.3) across almost all models. This means
that our findings, i.e., the strong correlation between flatness and RLoss, is supported by low
standard deviation. More importantly, the standard deviation reduces for particularly robust
methods.

Worst-Case Flatness on Clean Loss: During training worst-case flatness on clean Loss also
seems to correlate with robust overfitting. Thus, in Figure B.2 (middle), we plot RLoss
against worst-case flatness of Loss, showing that there is no clear relationship across models.
Nevertheless, many methods improving adversarial robustness also result in flatter minima in
the clean loss landscape. This is sensible as RLoss is generally an upper bound for (clean) Loss.
On the other hand, flatness in Loss is not discriminative enough to clearly distinguish between
robust and less robust models.

Ablation for Bξ(w): For computing our average- and worst-case flatness measures (in
RLoss), we considered various sizes of neighborhoods in weight space, i.e. Bξ(w) for dif-
ferent ξ. Figure B.3 considers ξ ∈ {0.25, 0.5, 0.75, 1} for average-case flatness (top) and
ξ ∈ {0.00075, 0.001, 0.003, 0.005} for worst-case flatness (bottom). In both cases, we plot RLoss
(y-axis) against flatness in RLoss (y-axis). Average-case flatness using small ξ = 0.25 results in
significantly smaller values, between 0 and 0.4, i.e., the increase in RLoss in random weight
directions is rather small. Still, the relationship between adversarial robustness and flatness
is clearly visible. The same holds for larger ξ ∈ {0.75, 1}. Worst-case flatness generally gives
a less clear picture regarding the relationship between robustness and flatness. Additionally,
for larger ξ ∈ {0.003, 0.005}, variance seems to increase such that this relationship becomes
less pronounced. In contrast to average-case flatness, the variance is not induced by the 10
restarts, but caused by training itself. Indeed, re-training our AT baseline leads to a worst-case
flatness in RLoss of 5.1, a significant reduction from 6.49 as obtained for our original baseline.
Overall, however, the observations from Section 5.3.2 can be confirmed using different sizes of
the neighborhood Bξ(w).
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Figure B.3: Flatness in RLoss, Ablation for Bξ(w): RLoss (y-axis) plotted against average-case
(top) and worst-case (bottom) flatness in RLoss (x-axis). Top: We consider ξ ∈ {0.25, 0.5, 0.75, 1}
for average-case flatness. The clear relationship between adversarial robustness, i.e., low RLoss,
and flatness shown for ξ = 0.5 in Figure 5.9 can be reproduced for all cases. Bottom: For
worst-case flatness, we consider ξ ∈ {0.00075, 0.001, 0.003, 0.005}. When chosen too large, e.g.,
ξ = 0.005, however, variance seems to increase, making the relationship less clear. For small ξ,
e.g., ξ = 0.00075, the correlation between robustness and flatness is pronounced, except for a
few outliers, including AT-AWP [WXW20b].

−1.0 −0.5 0.0 0.5 1.0

Step

2.5

5.0

7.5

10.0

12.5

15.0

A
ve

ra
ge

R
L

os
s

Random Directions

0.0 0.2 0.4

Step

2.5

5.0

7.5

10.0

12.5

15.0

W
or

st
R

L
os

s

Adversarial Directions Model Robustness Flatness
RErr ↓ RErr ↓ Worst Avg Worst
(test) (train) Loss RLoss RLoss

Scaled ×0.5 60.9 8.4 (-52.5) 0.86 1.36 6.50
AT (baseline) 61.0 8.4 (-52.6) 0.86 1.21 6.48
Scaled ×2 61.0 8.3 (-52.7) 0.86 1.27 6.49

Figure B.4: Flatness and Scale-Invariance. Left: We plot average RLoss and worst RLoss along
random and adversarial directions, for AT and its scaled variants, ×0.5 and ×2. Clearly, RLoss
landscape looks nearly identical. Right: Robustness against PGD-20 on train and test examples,
as well as average- and worst-case flatness measures on RLoss. For completeness, we also
include worst-case flatness on clean Loss. All of these measures are nearly invariant to scaling.
The shown differences can be attributed to randomness in computing these measures.

B.3 Scaling Networks and Scale-Invariance

Figure B.4 shows experiments supporting the claim that our flatness measures are scale-
invariant. As before, we scaled weights and biases of all convolutional layers in our adversarially
trained ResNet-18 [HZRS16a] by factor s ∈ {0.5, 2}. Note that all convolutional layers in
the ResNet are followed by batch normalization layers [IS15b]. Thus, the effect of scaling
is essentially “canceled out”, i.e., these convolutional layers are scale-invariant. Thus, the
prediction stays roughly constant. Figure B.4 (left) shows RLoss landscape visualizations for
AT and its scaled variants in random and adversarial weight directions. Clearly, scaling AT
has negligible impact on the RLoss landscape in both cases. Figure B.4 (right) shows that our
flatness measures remain invariant, as well.
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B.4 Methods

In the following, we briefly elaborate on the individual methods considered in our experiments.

Learning Rate Schedules: Besides our default, multistep learning rate schedule (learning
rate 0.05, reduced by factor 0.1 after epochs 60, 90, and 120), we followed [PYD+21] and
implemented the following learning rate schedules: First, simply using a constant learning rate
of 0.05. Second, only two “late” learning rate reductions at epochs 140 and 145, as done in
[QMG+19]. Third, using a cyclic learning rate, interpolating between a learning rate of 0.2 and
0 for 30 epochs per cycle, as, e.g., done in [WRK20]. We consider training for up to 4 cycles
(= 120 epochs). These learning rate schedules are available as part of PyTorch [PGC+17].

Label Smoothing: In [SVI+16], label smoothing is introduced as regularization to improve
(clean) generalization by not enforcing one-hot labels in the cross-entropy loss. Instead, for label
y and K = 10 classes, a target distribution p ∈ [0, 1]K (subject to ∑i pi = 1) with py = 1 − τ
(correct label) and pi = τ/K−1 for i ̸= y (all other labels) is enforced. During AT, we only apply
label smoothing for the weight update, not for PGD. We consider τ ∈ {0.1, 0.2, 0.3}.

Label Noise: Instead of explicitly enforcing a “smoothed” target distribution, we also consider
injecting label noise during training. In each batch, we sample random labels for a fraction of τ
of the examples. Note that the labels are sampled uniformly across all K = 10 classes. Thus, in
expectation, the enforced target distribution is py = 1 − τ + τ/K and pi = τ−τ/K/K−1. As a result,
this is equivalent to label smoothing with τ = τ − τ/K. In contrast to label smoothing, this
distribution is not enforced explicitly in the cross-entropy loss. As above, adversarial examples
are computed against the true labels (without label noise) and label noise is injected for the
weight update. We consider τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. While label smoothing does not further
improve adversarial robustness for τ > 0.3, label noise proved very effective in avoiding robust
overfitting, which is why we also consider τ = 0.4 or 0.5.

Weight Averaging: Follow [GQU+20, IPG+18], we keep a “running” average w̄ of the model’s
weights throughout training, updated in each iteration t as follows:

w̄(t) = τw̄(t−1) + (1 − τ)w(t) (B.3)

where w(t) are the weights in iteration t after the gradient update. Weight averaging is motivated
by finding the weights w̄ in the center of the found local minimum. As, depending on the
learning rate, training tends to oscillate, the average of the iterates is assumed to be close to the
actual center of the minimum. In our experiments, we consider τ ∈ {0.98, 0.985, 0.99, 0.9975}.

Weight Clipping: Following Chapter 6, we implement weight clipping by clipping the weights
to [−wmax, wmax] after each training iteration. We found that wmax can be chosen as small as
0.005, which we found to work particularly well. Larger wmax does not have significant impact
on adversarial robustness for AT. As weight clipping improves weight robustness, we also
expect weight clipping to improve flatness. We consider wmax ∈ {0.005, 0.01, 0.025}.

Ignoring Incorrect Examples & Preventing Label Leaking: As robust overfitting in AT leads
to large RLoss on incorrectly classified test examples, we investigate whether (a) not computing
adversarial examples on incorrectly classified examples (during training) or (b) computing
adversarial examples against the predicted (not true) label (during training) helps to mitigate
robust overfitting. These changes can be interpreted as ablations of MART [WZY+20] and
are easily implemented. Note that option (b) is essentially computing adversarial examples
without label leaking [KGB17].
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AutoAugment: In [CZM+19], an automatic procedure for finding data augmentation policies
is proposed, so-called AutoAugment. We use the found CIFAR10 policy (c.f. [CZM+19],
appendix), which includes quite extreme augmentations. For example, large translations are
possible, rendering the image nearly completely uniform, only leaving few pixels at the border.
In practice, AutoAugment usually prevents convergence and thus avoids overfitting. We further
combine AutoAugment with CutOut [DT17] (using random 16 × 16 “cutouts”). We apply both
AutoAugment and CutOut on top of our standard data augmentation, i.e., random flipping
and cropping. We use publicly available PyTorch implementations1.

Entropy-SGD: [CCS+17] explicitly encourages flatter minima by taking the so-called “local”
entropy into account. As a result, Entropy-SGD not only finds “deep” minima (i.e., low
loss values) but also flat ones. In practice, this is done using nested SGD: the inner loop
approximates the local entropy using stochastic gradient Langevin dynamics (SGLD), the outer
loop updates the weights. The number of inner iterations is denoted by L. While the original
work [CCS+17] uses L in [5, 20] on CIFAR10, we experiment with L ∈ {1, 2, 3, 5}. Note that, for
fair comparison, we train for 150/L epochs. For details on the Entropy-SGD algorithm, we refer
to [CCS+17]. Our implementation follows the official PyTorch implementation2.

Activation functions: We consider three recently proposed activation functions: SiLU [EUD18],
MiSH [Mis20] and GeLU [HG16]. These are defined as:

(SiLU) xσ(x), (MiSH) x tanh(log(1 + exp(x))), (GeLU) xσ(1.702x). (B.4)

with σ(x) = 1/(1+exp(−x)). All of these activation functions can be seen as smooth versions of
the ReLU activation. In [SSJF21], some of these activation functions are argued to avoid robust
overfitting due to lower curvature compared to ReLU.

AT-AWP: AT with adversarial weight perturbations (AT-AWP) [WXW20b] computes adver-
sarial weight perturbations on top of adversarial examples to further regularize training. This
is similar to our worst-case flatness measure of RLoss, however, adversarial examples and
adversarial weights are computed sequentially, not jointly, and only one iteration is used to
compute adversarial weights. Specifically, after computing adversarial examples x̃ = x + δ, an
adversarial weight perturbation ν is computed by solving

maxν∈Bξ (w) L( f (x̃; w + ν), y) (B.5)

using one iteration of gradient ascent with fixed step size of ξ. The gradient is normalized
per layer as in Equation (B.2). We considered ξ ∈ {0.0005, 0.001, 0.005, 0.01, 0.015, 0.02} and
between 1 and 7 iterations with ξ = 0.01 and 1 iteration working best.

TRADES: [ZYJ+19] proposes an alternative formulation of AT that allows a better trade-off
between adversarial robustness and (clean) accuracy. The loss to be minimized is

L( f (x; w), y) + λ max∥δ∥∞≤ϵ KL( f (x; w), f (x + δ; w)). (B.6)

During training, adversarial examples are computed by maximizing the KL-divergence (instead
of cross-entropy loss), i.e., using the second term in Equation (B.6). Commonly λ = 6 is chosen,
however, we additionally tried λ ∈ {1, 3, 6, 9}. We follow the official implementation3.

1https://github.com/DeepVoltaire/AutoAugment, https://github.com/uoguelph-mlrg/Cutout
2https://github.com/ucla-vision/entropy-sgd
3https://github.com/yaodongyu/TRADES

https://github.com/DeepVoltaire/AutoAugment
https://github.com/uoguelph-mlrg/Cutout
https://github.com/ucla-vision/entropy-sgd
https://github.com/yaodongyu/TRADES
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Figure B.5: Training Curves for Varying Hyperparameters: We plot RLoss for selected methods
and hyperparameters to demonstrate the impact of hyperparameters on avoiding or reducing
robust overfitting. Note that, for TRADES, we show both RLoss on adversarial examples
computed by maximizing the KL-divergence in Equation (B.6) (solid) and on adversarial
examples obtained by maximizing cross-entropy loss (“CE”, dotted).

MART: [WZY+20] explicitly addresses the problem of incorrectly classified examples during
training. First, the cross-entropy loss L for training is replaced using a binary cross-entropy
loss Lbin, i.e., classifying correct class vs. most-confident “other” class:

Lbin( f (x; w), y) = − log( fy(x; w))− log(1 − maxy′ ̸=y fy′(x; w)). (B.7)

Second, the KL-divergence used in TRADES in Equation (B.6) is combined with a confidence-
based weight:

Lbin( f (x̃; w), y) + λKL( f (x; w), f (x̃; w))(1 − fy(x; w)) (B.8)

Adversarial examples are still computed by maximizing regular cross-entropy loss. We follow
the official implementation4.

PGD-τ: In [ZXH+20], a variant of PGD is proposed for AT: PGD-τ stops maximization τ
iterations after the label flipped. This is supposed to find “friendlier” adversarial examples that
can be used for AT. Note that τ = 0 also does not compute adversarial examples on incorrectly
classified training examples. We consider τ ∈ {0, 1, 2, 3}.

Self-Supervision: Following [HMKS19], we implement AT using rotation-prediction as addi-
tional self-supervised task. Note, however, that no additional (unlabeled) training examples are
used. Specifically, the following learning problem is tackled:

max∥δ∥∞≤ϵL( f (x + δ; w), y) + λ max∥δ∥∞≤ϵ L( f (rot(x + δ, r); w), yr) (B.9)

for r ∈ {0, 90, 180, 270}, yr ∈ {0, 1, 2, 3} where rot(x, r) rotates the training example x by r
degrees. In practice, we split every batch in half: The first half uses the original training exam-
ples with correct labels. Examples in the second half are rotated randomly by {0, 90, 180, 270}

4https://github.com/YisenWang/MART

https://github.com/YisenWang/MART
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Figure B.6: Flatness Throughout Training: We plot RLoss against average-case flatness in
RLoss for selected methods throughout training epochs. Early epochs are shown in dark blue,
late epochs are shown in dark red. For cyclic learning rate, we show 4 cycles with a total of
120 epochs. For many methods not avoiding robust overfitting, flatness decreases alongside an
increase in RLoss during overfitting. Using, e.g., AutoAugment, label noise or Entropy-SGD, in
contrast, both effects are reduced.

degrees, and the labels correspond to the rotation (i.e., {0, 1, 2, 3}). Adversarial examples are
computed against the true or rotation-based labels. Note that, in contrast to common practice
[SBC+20], we do not predict all four possible rotations every batch, but just one randomly
drawn per example. We still use 150 epochs in total. We consider λ ∈ {0.5, 1, 2, 4, 8}.

Additional Unlabeled Examples: As proposed in [CRS+19, AUH+19], we also consider
additional, pseudo-labeled examples during training. We use the provided pseudo-labeled data
from [CRS+19] and split each batch in half: using 50% original CIFAR10 training examples,
and 50% pseudo-labeled training examples from [CRS+19]. We still use 150 epochs in total.
We follow the official PyTorch implementation5.

B.4.1 Training Curves

Figure B.5 shows (test) RLoss throughout training for selected methods and hyperparameters.
Across all methods, we found that hyperparameters have a large impact on robust overfitting.
For example, weight decay or smaller batch sizes can reduce and delay robust overfitting
considerably if regularization is “strong” enough, i.e., large weight decay or low batch size
(to induce more randomness). For the other methods, difference between hyperparameters
is more subtle. However, across all cases, reduced overfitting generally goes hand in hand
with higher RLoss on training examples, i.e., the robust generalization gap is reduced. This
indicates that avoiding convergence on training examples plays an important role in avoiding
robust overfitting. Training curves for all methods are shown in Figure B.8.
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Figure B.7: Robustness and Flatness for Varying Hyperparameters: RLoss (y-axis) plot-
ted against average-case flatness of RLoss (x-axis) for various groups of methods: learning
rate schedules (left), label smoothing/noise and weight decay (middle left), weight clipping,
Entropy-SGD and AT-AWP (middle right) as well as AT with self-supervision, MART and
TRADES (right). As outlined in Section B.4, we considered multiple hyperparameter settings
per method and show that favorable hyperparameters in terms of adversarial robustness also
result in improved flatness. That is, in most cases, varying hyperparameters creates (roughly)
a diagonal line in these plots. Interestingly, weight clipping can be considered an outlier:
adversarial robustness improves while average-case flatness reduces.

B.4.2 Flatness

Flatness Throughout Training: Figure B.6 shows RLoss (y-axis) plotted against average-case
flatness in RLoss (x-axis) throughout training, i.e., over epochs (dark blue to dark red), for
methods not highlighted in Section 5.3. Strikingly, using higher ϵ=9/255 or alternative activation
functions (SiLU [EUD18], GeLU [HG16] or MiSH [Mis20]) affect neither robust overfitting nor
flatness significantly. Interestingly, label smoothing avoids sharper minima during overfitting,
but does not avoid an increased RLoss. Methods that consistently reduce or avoid robust
overfitting, e.g., weight clipping, label noise, strong weight decay or AutoAugment, avoid both
the increase in RLoss and worse flatness. Clearly, our previous observations are confirmed:
flatness usually reduces alongside RLoss in robust overfitting.

Flatness Across Hyperparameters: In Figure B.7, we consider flatness when changing hyper-
parameters of selected methods. As before, we plot RLoss (y-axis) against average-case flatness
in RLoss (x-axis) for various groups of methods: learning rate schedules (first column), label
smoothing/noise and weight decay (second column), methods explicitly improving flatness,
i.e., weight clipping, Entropy-SGD and AT-AWP (third column), as well as self-supervision,
MART and TRADES (fourth column). Except for weight clipping, hyperparameter settings
with improved adversarial robustness also favor flatter minima. In most cases, this relationship
follows a clear, diagonal line. For weight clipping, in contrast, the relationship is reversed:
improved flatness reduces RLoss. Thus, Figure B.7 (fifth column) considers worst-case flatness
in RLoss. Here, “stronger” weight clipping improves both robustness and flatness. This sup-
ports our conclusions: methods need at least “some kind” of flatness, average- or worst-case,
in order to improve adversarial robustness.

5https://github.com/yaircarmon/semisup-adv

https://github.com/yaircarmon/semisup-adv
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Model Test Robustness Train Robustness Flatness
(sorted by RLoss on AA) Err RErr RErr Err RErr RErr Avg Worst
(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) RLoss RLoss
(AA = AutoAttack [CH20c]) (PGD) (AA) (PGD) (AA)

Carmon [CRS+19] 10.31 37.6 40.8 1.93 16.8 19.2 0.7 0.34
Engstrom [EIS+19] 12.97 45.3 49.2 6.71 33.1 36.3 0.23 0.51
Pang [PYD+20] 14.87 36.6 45.8 7.79 20.5 28.6 0.08 0.07
Wang [WZY+20] 12.5 37.1 42.8 8.07 24.8 32.1 0.61 0.34
Wong [WRK20] 16.66 54.4 57.6 11.86 44.9 49.2 0.3 0.16
Wu [WXW20b] 14.64 41.5 43.9 2.2 14.5 16.5 0.49 0.09
Zhang [ZYJ+19] 15.08 44.1 46.4 7.83 29.9 33.6 0.61 0.43
Zhang [ZXH+20] 15.48 43 47.2 4.85 26.3 30.1 0.51 0.13

Table B.1: RobustBench [CAS+20a]: Err, RErr and Flatness in RLoss: Err and RErr on train
and test examples as well as average- and worst-case flatness in RLoss for pre-trained models
from RobustBench. In contrast to Table B.2, the RobustBench models were obtained using early
stopping.

B.5 Results in Tabular Form

Table B.2 reports the quantitative results from all our experiments. Besides flatness in RLoss,
we also report both average- and worst-case flatness in (clean) Loss. We use ξ = 0.5 for
average-case flatness and ξ = 0.003 for worst-case flatness. In Table B.2, methods are sorted
(in ascending order) by RErr against AutoAttack [CH20c]. Additionally, we split all methods
into four groups: good , average , poor and worse robustness at 57%, 60% and 62.8% RErr.
These thresholds correspond roughly to the 30% and 70% percentile of all methods with
RErr ≤ 62.8%. As our AT baseline obtains 62.8% RErr, we group all methods with higher RErr
than 62.8% in worse robustness. Finally, Table B.1 report RErr and RLoss, together with our
average- and worst-case flatness (of RLoss) measures for the evaluated, pre-trained models
from RobustBench [CAS+20a].
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Model Test Robustness Train Robustness Early Stopping Flatness
(sorted by RErr on AA) Err RErr RErr Err RErr RErr RErr RErr Avg Worst Avg Worst
(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) (stop) (stop) Loss Loss RLoss RLoss
(AA = AutoAttack [CH20c]) (PGD) (AA) (PGD) (AA) (PGD) (AA)

+Unlabeled 16.96 45.9 48.9 12.6 38.6 43.2 45.3 48.9 0.12 4.64 0.32 1.2
Cyclic ×2 19.66 51.2 53.6 7.64 32.3 35.4 51 53.6 0.09 3.93 0.35 1.5
AutoAugment 16.89 49.5 54.0 12.25 42.8 47.9 49.5 53.5 0.13 15.01 0.49 0.69
AT-AWP ξ=0.01 21.4 50.7 54.3 13.52 37.4 43.1 48.9 53.6 0.12 6.17 0.35 2.68
AT-AWP ξ=0.005 20.05 52.5 55 7.34 28.1 31.8 50.8 53.3 0.15 6.98 0.54 4.46
Label noise τ=0.4 20.56 52.4 55 9.66 32.8 36.8 51.2 54.8 0.11 3.95 0.21 0.96
TRADES λ=9 23.03 52.4 55 2.92 16.4 18.8 49.7 53 0.19 5.04 0.45 3.08
Cyclic ×3 20.04 53.1 55.2 5.62 26.9 30.6 53.1 55.2 0.1 4.1 0.53 0.93
Cyclic 22.42 53.2 55.4 13.09 39.5 43.5 53.2 55.4 0.07 2.6 0.22 0.41
Label noise τ=0.5 22.71 51.3 55.4 15.04 40.4 45.5 51.3 55.4 0.09 0.43 0.16 0.13
Label noise τ=0.3 19.9 54.2 56.2 5.47 26.9 30 51.8 55.5 0.15 3.37 0.33 0.93
Weight clipping wmax=0.005 21.39 54.1 56.5 10.19 35.6 39 54.1 56.5 0.74 10.49 0.41 4.58
TRADES λ=6 21.68 55.3 56.7 1.74 13.5 15.8 50.1 53.4 0.21 5.12 0.57 2.26
Cyclic ×4 19.85 55.2 56.9 4.01 23.1 26 55.1 56.9 0.16 6.65 0.62 0.8
Self-supervision λ=4 17.1 55.3 57.1 5.76 41.9 45 55.3 56.8 0.12 5.59 0.34 2.64
Adam 25.84 53.9 57.5 18.87 47.9 52.3 53.9 57.5 0.22 2.65 0.56 0.9
Entropy-SGD (L=2) 24.53 54.4 57.6 9.03 35.4 38.8 52.6 55.2 0.08 1.76 0.27 0.7
Self-supervision λ=1 15.9 56.9 58.1 1.48 28.3 31.6 55.9 57.5 0.12 6.98 0.46 3.87
Weight decay 0.05 19.32 56.2 58.1 5.03 29 32.8 52 54.8 0.12 5.77 0.51 3.94
Batch size 8 17.73 57.1 58.2 3.46 26.8 31.4 55.6 58.2 0.32 24.01 1.55 12.27
Entropy-SGD (L=1) 25.42 56 58.6 12.79 42.8 46.1 53.2 56.9 0.09 3.24 0.28 1.8
Self-supervision λ=0.5 16.16 58 58.6 1.26 28 30.7 56.7 58.3 0.1 6.48 0.45 3.29
AT-AWP ξ=0.001 18.75 57.3 58.7 1.34 15.1 18.3 52.1 54.6 0.34 20.42 1.44 13.82
Self-supervision λ=2 15.72 57.4 58.7 2.47 33.4 36.6 55.8 57.7 0.1 21.79 0.47 3.47
MART λ=9 22.06 57 58.8 3.86 16 22 50 55 0.18 8.08 0.7 3.42
Weight decay 0.01 18.52 57.2 58.9 2.06 20.1 23.2 51.7 55.3 0.25 16.46 0.9 7.19
Batch size 16 18.12 58.3 59 1.82 20.4 24.5 52.5 55.6 0.33 22.11 1.41 11.39
Self-supervision λ=8 19.6 56.6 59 12.08 50 53.3 56.6 58.6 0.11 3.59 0.29 1.76
TRADES λ=3 20.51 57.7 59.1 0.94 13.4 15.5 52.3 54.9 0.2 19.08 0.71 3.48
Weight decay 0.005 18.79 58.2 59.4 2.03 20.2 23.9 51.8 54.3 0.26 19.67 1.2 8.35
Label noise τ=0.2 19.45 57.5 59.5 2.34 18.8 22.2 50.2 53 0.18 9.79 0.39 1.4
MART λ=3 20.89 58.9 59.6 1.94 14.4 19.2 53.3 57.4 0.17 10.53 1.01 3.99
Weight clipping wmax=0.01 19.15 58 59.6 3.28 21.5 24.8 56.7 58.5 0.66 15.1 0.26 7.41
Learning rate 0.2 19.17 58.3 59.7 0.46 9.4 12.4 54.3 56.6 0.2 24.41 1.44 5.75
MiSH 19.29 58.9 59.8 0.06 4.5 5.3 51.8 53.7 0.25 10.04 1.58 3.55
“Late” multistep 20.63 58.5 59.8 1.6 16.4 18.4 54.2 57.8 0.17 5.24 0.81 2.96
SiLU 19.45 59.7 60 0.07 4.8 5.6 51.3 53.7 0.3 9.97 1.68 4.2
Weight averaging (τ=0.9975) 19.63 59.7 60 0.19 7.9 10 50.5 53 0.23 15.66 1.29 6
Weight clipping 0.025 18.91 59.2 60.4 0.73 12.5 15.6 52.1 54.9 0.32 17.4 0 8.61
Batch size 32 18.72 59.6 60.5 0.56 12 14.6 53.7 55.6 0.18 19.34 1.22 7.88
Entropy-SGD (L=3) 24 58.5 60.5 5.25 29.9 33.9 56.7 59.3 0.09 2.91 0.33 1.03
Label noise τ=0.1 19.39 59 60.8 1.12 14.1 17.5 51.9 55 0.2 16.75 0.69 3.55
Larger ϵ=9/255 21.3 60.4 60.9 0.47 8.9 11.1 51.3 53.8 0.21 10.26 1.34 5.85
Label smoothing τ=0.1 19.55 59.6 61 0.2 6.4 8.5 52.5 55 0.26 8.87 0.85 2.66
MART λ=6 21.51 58.7 61 3.21 16.1 20.8 49.2 54.7 0.18 13.52 0.74 3.17
Weight averaging (τ=0.98) 20.01 60.6 61 0.2 7.6 9.9 54.3 56.3 0.23 12.8 1.37 5.6
Weight decay 0.001 19.47 59.9 61 0.36 10.4 13.3 52 54.8 0.24 8.36 1.3 6.78
Batch size 64 19.06 60.5 61.1 0.3 9.2 11.1 51.2 54.4 0.18 23.13 1.14 5.96
GeLU 20.64 60.8 61.1 0.01 2.7 3.2 54.9 56.7 0.23 14.31 1.56 4.13
Label smoothing τ=0.3 19.41 59.4 61.2 0.27 5.7 8 51.1 54 0.29 18.42 0.65 2.72
MART λ=1 20.51 59.4 61.2 1.04 11.4 14.7 50.3 55.4 0.17 7.97 0.87 3.1
Weight averaging (τ=0.99) 20.41 60.3 61.4 0.19 7.8 9.6 51.7 54.2 0.22 6.12 1.44 4.98
Dropout 18.91 60.5 61.6 0.58 13 16.7 51.2 54.5 0.2 13.81 1.52 7.01
PGD-14 20.8 60.6 61.6 0.22 7.1 9.3 53.6 56.1 0.27 20.9 1.48 5.35
Entropy-SGD (L=5) 23.48 59.5 61.7 3.01 22.2 25.9 53.2 56.6 0.1 3.57 0.46 1.49
Ignore incorrect 18.4 60.5 61.8 0.06 6.3 9 54.4 56.4 0.21 14.65 1.68 5.93
Learning rate 0.1 19.23 61.1 61.9 0.26 8.9 11.5 51.9 54.2 0.21 17.63 1.23 5.26
TRADES λ=1 17.54 59.5 61.9 0.15 16.6 20.7 56.6 59.6 0.16 12.68 0.78 4.3
Weight averaging (τ=0.985) 20.27 61.7 62.3 0.18 7.4 9.4 55.9 58 0.22 15.66 1.35 6.51
Label smoothing τ=0.2 20.07 60.2 62.4 0.26 5.1 7.8 51.9 54.6 0.28 9.94 0.69 2.61
Prevent label leaking 18.38 62.1 62.4 0.38 8.6 10.8 55.3 57.7 0.22 14.62 1.48 6
AT (baseline) 20.2 61 62.8 0.33 8.5 10.7 52.3 54.6 0.21 21.05 1.22 6.49
Const learning rate 0.05 24.96 60.7 62.9 6.17 32.9 37.8 55.4 58.9 0.09 3.52 0.44 0.9
PGD-5 20.22 61.8 62.9 0.11 7.3 10.4 55.1 57.4 0.17 20.4 1.24 4.19
Batch size 256 20.86 62.6 63.3 0.28 8.2 10.3 56.9 58.4 0.3 11.22 1.35 8.33
PGD-7-3 17.17 61.7 63.3 0.08 19.5 25.2 51.3 58.8 0.17 7.4 1.08 5.29
Batch size 512 22.58 62.9 63.5 0.64 11 14.2 58.6 60 0.48 23.97 1.92 16.22
Learning rate 0.01 22.83 63 63.5 1.05 15.2 18 57.8 59.7 0.56 23.42 2.25 16.02
No weight decay 23.37 64.8 65.7 0.23 9.2 12.7 57.1 60.3 0.66 21.05 2.53 11.75
PGD-7-0 14.67 63.8 65.7 0.09 23.7 30 59.4 61.4 0.11 6.86 1.28 2.8
PGD-7-2 16.19 63.6 65.9 0.1 20.9 28.1 58.3 62.3 0.14 22.81 1.21 2.55
PGD-7-1 15.02 64.1 67.1 0.11 25.9 34.3 58.8 63.8 0.13 11.71 1.15 2.33
Const learning rate 0.01 25.87 66.7 67.4 0.67 18.5 20.7 58.4 61 0.33 15.09 1.37 8.27
Const learning rate 0.005 27.24 68.3 69.2 0.42 15.5 16.7 61.1 65.5 0.59 20.63 2.06 15.74

Table B.2: Results: Err, RErr and Flatness in Loss and RLoss. Err and RErr (PGD-20 and
AutoAttack [CH20c]) on test and train examples, together with average- and worst-case flatness
in (clean) Loss and RLoss. Methods sorted by (test) RErr against AutoAttack and split into
good , average , poor and worse robustness at 57%, 60% and 62.8% RErr, see text.
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Figure B.8: Training Curves: Test and train RLoss (top) and RErr (bottom), including RErr
for early stopping, for all considered methods with selected hyperparameters. * Train and
test RLoss correspond to the attacks used during training, e.g., PGD-τ or maximizing KL-
divergence for TRADES. † Reported RLoss corresponds to RLoss on adversarial examples
without adversarial weights.
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C.1 Complete Profiled Bit Error Statistics and Evaluation

Figure C.1 splits the bit error distributions for chips 1 and 2 into a 0-to-1 flip and a 1-to-0 bit
flip map. The obtained maps, p1t0 and p0t1, contain per-bit flip probabilities for 1-to-0 and
0-to-1 bit flips. In this particular profiled chip, Figure C.1 (bottom), 0-to-1 flips are more likely.
Similarly, Figure C.1 (right) shows that most 0-to-1 flips are actually persistent across time i.e.,
not random transient errors. The following table summarizing the key statistics of the profiled
chips: the overall bit error rate p, the rate of 1-to-0 and 0-to-1 flips p1t0 and p0t1, and the rate of
persistent errors psa, all in %:

Chip p p0t1 p1t0 psa

1
2.744 1.27 1.47 1.223
0.866 0.38 0.49 0.393

2
4.707 3.443 1.091 0.627
1.01 0.82 0.19 0.105
0.136 0.115 0.021 0.01

3
2.297 1.81 0.48 0.204
0.597 0.496 0.0995 0.206

For evaluation, we assume that the deep neural network weights are mapped linearly onto
the memory of these chips. The bit error maps are of size 8192 × 128 bits for chips 2 and 3 and

p≈2.75%

p≈1.08%

128 columns

64
ro

w
s Chip 1

Chip 2

Overall bit flips = 1-to-0 flips + 0-to-1 flips persistent errors
Figure C.1: Low-Voltage Induced Bit Errors on Profiled Chips: We break the the bit error
distribution of chips 1 and 2 down into 1-to-0 and 0-to-1 bit flips. Additionally, we show that
most of the bit errors are actually persistent and thus not subject to randomness. As before, we
show a sub-array of size 64 × 128 from all profiled bit cells (i.e., across all SRAM arrays).
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2048 × 128 bits for chip 1. Furthermore, to simulate various different mappings, we repeat this
procedure with various offsets and compute average RErr across all mappings.

C.2 Quantization and Bit Manipulation in PyTorch

We implement “fake” fixed-point quantization for quantization-aware training and bit error
injection directly in PyTorch [PGC+17]. Here, fake quantization means that computation is
performed in floating point, but before doing a forward pass, the deep neural network is
quantized and dequantized, i.e., wq = Q−1(Q(w)). Note that we quantize into unsigned 8 bit
integers, irrespective of the target precision m ≤ 8. To later induce random bit errors, the 8 − m
most significant bits (MSBs) are masked for m < 8. Bit manipulation of unsigned 8 bit integers
is then implemented in C/CUDA and interfaced to Python using CuPy [cup] or CFFI [cff].
These functions can directly operate on PyTorch tensors, allowing bit manipulation on the CPU
as well as the GPU.

SimpleNet on MNIST
Layer Output Size

NC, NH , NW

Conv+GN+ReLU∗ 32, 28, 28
Conv+GN+ReLU∗ 64, 28, 28
Conv+GN+ReLU∗ 64, 28, 28
Conv+GN+ReLU∗ 64, 28, 28
Pool 64, 14, 14
Conv+GN+ReLU∗ 64, 14, 14
Conv+GN+ReLU∗ 64, 14, 14
Conv+GN+ReLU∗ 128, 14, 14
Pool 128, 7, 7
Conv+GN+ReLU∗ 256, 7, 7
Conv+GN+ReLU∗ 1024, 7, 7
Conv+GN+ReLU∗ 128, 7, 7
Pool 128, 3, 3
Conv+GN+ReLU∗ 128, 3, 3
Pool 128, 1, 1
FC 10

W 1,082,826

SimpleNet on CIFAR10
Layer Output Size

NC, NH , NW

Conv+GN+ReLU∗ 64, 32, 32
Conv+GN+ReLU∗ 128, 32, 32
Conv+GN+ReLU∗ 128, 32, 32
Conv+GN+ReLU∗ 128, 32, 32
Pool 128, 16, 16
Conv+GN+ReLU∗ 128, 16, 16
Conv+GN+ReLU∗ 128, 16, 16
Conv+GN+ReLU∗ 256, 16, 16
Pool 256, 8, 8
Conv+GN+ReLU∗ 256, 8, 8
Conv+GN+ReLU∗ 256, 8, 8
Pool 256, 4, 4
Conv+GN+ReLU∗ 512, 4, 4
Pool 512, 2, 2
Conv+GN+ReLU∗ 2048, 2, 2
Conv+GN+ReLU∗ 256, 2, 2
Pool 256, 1, 1
Conv+GN+ReLU∗ 256, 1, 1
Pool 256, 1, 1
FC 10

W 5,498,378

p on MNIST
p in % pmW, m = 8

Random Bit Errors
10 866260
5 433130
1.5 129939
1 86626
0.5 43313

p on CIFAR
p in % pmW, m = 8

Random Bit Errors
1 439870
0.5 219935
0.01 43987

Table C.1: Architectures, Number of Weights W, Expected Number of Bit Errors: Left and
Middle: SimpleNet architectures used for MNIST and CIFAR10 with the corresponding output
sizes, channels NC, height NH and width NW , and the total number of weights W. We use
group normalization with learnable scale/bias. Right: The number of expected bit errors for
random bit errors, i.e., pmW. With ∗ we mark “blocks” of convolutional, normalization and
ReLU layer after which we inject bit errors in activations in the corresponding experiments.
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CIFAR10
SimpleNet+GN
m Err in %
– 4.34
8 4.32
4* 5.29
3* 5.71

CIFAR10
Arch. Comparison

Model no Quant. m = 8
SimpleNet+GN 4.34 4.32
SimpleNet+BN 4.04 3.83
ResNet-50+GN 5.88 6.81
ResNet-50+BN 3.91 3.67

MNIST
m Err in %
4 0.4
2* 0.47

CIFAR100
Quant. m, Model Err in %
8, SimpleNet 23.68
8, WRN 18.53

Table C.2: Quantization-Aware Training Accuracies: Clean Err for m = 8 bits or lower using
our robust fixed-point quantization. We obtain competitive performance for m = 8 and m = 4
bits. On CIFAR100, a Wide ResNet (WRN) clearly outperforms our standard SimpleNet model.
Batch normalization (BN), improving Err slightly on CIFAR10, is significantly less robust than
group normalization (GN). * For m ≤ 4, we report results with weight clipping, Clipping0.1.

CIFAR10: quantization robustness
Model Err

in %
RErr in %, p in % p=0.01

(see text) 0.01 0.05 0.1 0.5 1 1.5

m
=

8
bi

t global 4.63 10.70 86.01 90.36 90.71 90.57 –
per-layer (= Normal) 4.36 4.82 5.51 6.37 24.76 72.65 87.40
+asymmetric 4.36 5.76 6.47 7.85 40.78 76.72 85.83
+unsigned 4.42 6.58 6.97 7.4 17.00 54.57 83.18
+rounded (= RQuant) 4.32 4.60 5.10 5.54 11.28 32.05 68.65

4
bi

t integer conversion 5.81 90.46 90.40 90.39 90.36 90.36 90.39
proper rounding 5.29 5.49 5.75 5.99 7.71 10.62 15.79

Table C.3: Impact of Quantization Scheme on Robustness: We report Err and RErr for
various bit error rates p with global, per-layer and asymmetric quantization, m = 8 bits.
Instead of quantizing into signed integer, using unsigned integers works better for asymmetric
quantization. Furthermore, proper rounding instead of integer conversion also improves
robustness. Note that influence on clean Err is negligible, i.e., the model can “learn around”
these difference in quantization-aware training. Especially for m = 4 bit, the latter makes a
significant difference in terms of robustness.

C.3 Network Architectures and Expected Bit Errors

Table C.1 summarizes the used SimpleNet [HRFS16] architecture, its number of weights and
the expected number of bit errors for various bit error rates p. Blocks of convolutional, group
normalization and ReLU layers highlighted with a ∗ are subject to bit errors in their activations
in the corresponding experiments.

C.4 Additional Experiments

C.4.1 Architecture Comparison

Table C.2 summarizes accuracies for various architectures on MNIST, CIFAR10 and CIFAR100.
We report results for various precisions m and specifically compare the used SimpleNet to
ResNets [HZRS16b], considering both batch normalization (BN) [IS15a] and group normal-
ization (GN) [WH18]. As can be seen, a ResNet-50 on CIFAR10 is able to outperform our
SimpleNet slightly when using BN, it performs significantly worse with GN.
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CIFAR10 (m = 8 bit): clipping robustness for post- and during-training quantization
Model Err

in %
RErr in %, p in % p=0.01

0.01 0.05 0.1 0.5 1 1.5

Po
st

-T
ra

in
in

g
A

sy
m

m
et

ri
c Normal 4.37 4.95 ±0.11 5.47 ±0.17 6.03 ±0.22 15.42 ±3.4 51.83 ±9.92 81.74 ±5.14

RQuant 4.27 4.59 ±0.08 5.10 ±0.13 5.54 ±0.15 10.59 ±1.11 30.58 ±6.05 63.72 ±6.89

Clipping0.25 4.96 5.24 ±0.07 5.73 ±0.14 6.16 ±0.21 10.51 ±0.91 26.27 ±5.65 61.49 ±9.03

Clipping0.2 5.24 5.48 ±0.05 5.87 ±0.09 6.23 ±0.13 9.47 ±0.7 19.78 ±3.58 43.64 ±8.2

Clipping0.15 5.38 5.63 ±0.05 6.03 ±0.09 6.38 ±0.13 8.80 ±0.41 15.74 ±2.24 36.29 ±7.34

Clipping0.1 5.32 5.52 ±0.04 5.82 ±0.06 6.05 ±0.07 7.45 ±0.26 9.80 ±0.62 17.56 ±3.08

Sy
m

m
et

ri
c

(d
ur

in
g

tr
ai

ni
ng

) Normal 4.36 4.82 ±0.07 5.51 ±0.19 6.37 ±0.32 24.76 ±4.71 72.65 ±6.35 87.40 ±2.47

RQuant 4.39 4.77 ±0.08 5.43 ±0.21 6.10 ±0.32 17.11 ±3.07 55.35 ±9.4 82.84 ±4.52

Clipping0.25 4.63 4.99 ±0.07 5.53 ±0.1 6.06 ±0.16 13.55 ±1.42 41.64 ±7.35 73.39 ±7.15

Clipping0.2 4.50 4.79 ±0.06 5.25 ±0.09 5.65 ±0.16 9.64 ±0.99 21.37 ±4.23 45.68 ±7.9

Clipping0.15 5.18 5.42 ±0.05 5.76 ±0.08 6.07 ±0.09 8.36 ±0.43 13.80 ±1.45 24.70 ±3.77

Clipping0.1 4.86 5.07 ±0.04 5.34 ±0.06 5.59 ±0.1 7.12 ±0.3 9.44 ±0.7 13.14 ±1.79

Clipping0.05 5.56 5.70 ±0.03 5.89 ±0.06 6.03 ±0.08 6.68 ±0.14 7.31 ±0.2 8.06 ±0.36

A
sy

m
m

et
ri

c
(d

ef
au

lt
)

qu
an

t.
(d

ur
in

g
tr

ai
ni

ng
)

Normal 4.36 4.82 ±0.07 5.51 ±0.19 6.37 ±0.32 24.76 ±4.71 72.65 ±6.35 87.40 ±2.47

RQuant 4.32 4.60 ±0.08 5.10 ±0.13 5.54 ±0.2 11.28 ±1.47 32.05 ±6 68.65 ±9.23

Clipping0.25 4.58 4.84 ±0.05 5.29 ±0.12 5.71 ±0.16 10.52 ±1.14 27.95 ±4.16 62.46 ±8.89

Clipping0.2 4.63 4.91 ±0.05 5.28 ±0.08 5.62 ±0.11 8.27 ±0.35 18.00 ±2.84 53.74 ±8.89

Clipping0.15 4.42 4.66 ±0.05 5.01 ±0.09 5.31 ±0.12 7.81 ±0.6 13.08 ±2.21 23.85 ±5.07

Clipping0.1 4.82 5.04 ±0.04 5.33 ±0.07 5.58 ±0.1 6.95 ±0.24 8.93 ±0.46 12.22 ±1.29

Clipping0.05 5.44 5.59 ±0.04 5.76 ±0.07 5.90 ±0.07 6.53 ±0.13 7.18 ±0.16 7.92 ±0.25

Clipping0.2 +LS 4.48 4.77 ±0.05 5.19 ±0.1 5.55 ±0.12 9.46 ±0.82 32.49 ±5.07 68.60 ±7.33

Clipping0.15 +LS 4.67 4.86 ±0.05 5.23 ±0.08 5.83 ±0.12 7.99 ±0.43 29.40 ±6.99 68.99 ±8.48

Clipping0.1 +LS 4.82 5.05 ±0.04 5.37 ±0.08 6.10 ±0.11 7.36 ±0.4 10.59 ±1.01 18.31 ±2.84

Clipping0.05 +LS 5.30 5.43 ±0.03 5.63 ±0.06 6.43 ±0.07 6.51 ±0.15 7.30 ±0.23 8.06 ±0.38

Table C.4: Weight Clipping Improves Robustness. We report Err and RErr for various
experiments on the robustness of weight clipping with wmax, i.e., Clippingwmax . First, we
show that the robustness benefit of Clipping is independent of quantization-aware training,
robustness also improves when applying post-training quantization. Then, we show results
for both symmetric and asymmetric quantization. For the latter we demonstrate that label
smoothing [SVI+16] reduces the obtained robustness. This supports our hypothesis that weight
clipping, driven by minimizing cross-entropy loss during training, improves robustness through
redundancy.

C.4.2 Robust Quantization

Table C.3 shows results considering additional bit error rates p. Note that, for m = 8 bit,
changes in the quantization has negligible impact on clean Err. Only the change from global to
per-layer quantization makes a difference. However, considering RErr for larger bit error rates,
reducing the quantization range, e.g., through per-layer and asymmetric quantization, improves
robustness significantly. Other aspects of the quantization scheme also play an important role,
especially for low-precision such as m = 4 bit: asymmetric quantization into unsigned integers
and proper rounding.
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Figure C.2: Weight Clipping Improves L∞ Ro-
bustness: On CIFAR10, we plot RErr for rela-
tive L∞ perturbations on weights: Random noise
with L∞-norm smaller than or equal to x% of the
weight range is applied. Clipping clearly im-
proves robustness. Again, the relative magnitude
of noise is not affected by weight clipping. Note
that L∞ noise usually affects all weights, while
random bit errors affect only a portion of the
weights.

Clipping0.05 RandBET
(w/o Clipping)

RQuant

Figure C.3: Weight Clipping Increases Redundancy: We show weight distributions of selected
layers for Clipping0.05, RandBET (without weight clipping) as well as RQuant. We show
weights and biases for the logit layer as well as the first and last (13th) convolutional layer.
Scale/Bias parameters of GN are also included.

C.4.3 (Global) Weight Clipping (Clipping)

In Table C.4 we present additional robustness results for weight clipping. Note that weight
clipping constraints the weights during training to [−wmax, wmax] through projection. We
demonstrate that weight clipping can also be used independent of quantization. To this end,
we train deep neural networks with weight clipping, but without quantization. We apply
post-training quantization and evaluate bit error robustness. While the robustness is reduced
slightly compared to quantization-aware training and weight clipping, the robustness benefits
of weight clipping are clearly visible. For example, clipping at wmax = 0.1 improves RErr
from 30.58% to 9.8% against p = 1% bit error rate when performing post-training quantization.
With symmetric quantization-aware training, Clipping0.1 improves slightly to 7.31%. Below
(middle), we show results for weight clipping and symmetric quantization. These results are
complemented in Table C.5 with RandBET. Symmetric quantization might be preferable due to
reduced computation and energy cost compared to asymmetric quantization. However, this also
increases RErr slightly. Nevertheless, Clipping consistently improves robustness, independent
of the difference in quantization. Finally, on the bottom, we show results confirming the
adverse effect of label smoothing [SVI+16] on RErr. Figure C.2 also shows that the obtained
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CIFAR10 (m = 8 bit): RandBET with symmetric quantization
Model Err

in %
RErr in %, p in % p=0.01

0.01 0.05 0.1 0.5 1 1.5

Normal 4.36 4.82 ±0.07 5.51 ±0.19 6.37 ±0.32 24.76 ±4.71 72.65 ±6.35 87.40 ±2.47

RQuant 4.39 4.77 ±0.08 5.43 ±0.21 6.10 ±0.32 17.11 ±3.07 55.35 ±9.4 82.84 ±4.52

Clipping0.1 4.86 5.07 ±0.04 5.34 ±0.06 5.59 ±0.1 7.12 ±0.3 9.44 ±0.7 13.14 ±1.79

RandBET0.1 p=0.01 5.07 5.27 ±0.04 5.54 ±0.07 5.73 ±0.11 7.18 ±0.29 9.63 ±0.9 13.81 ±2.2

RandBET0.1 p=0.1 4.62 4.83 ±0.04 5.09 ±0.08 5.31 ±0.08 6.70 ±0.28 8.89 ±0.59 12.20 ±1.33

RandBET0.1 p=1 5.03 5.22 ±0.04 5.43 ±0.06 5.61 ±0.07 6.56 ±0.13 7.70 ±0.26 8.99 ±0.42

RandBET0.1 p=1.5 5.24 5.37 ±0.03 5.57 ±0.06 5.76 ±0.07 6.66 ±0.14 7.62 ±0.25 8.71 ±0.42

RandBET0.1 p=2 5.82 5.97 ±0.04 6.19 ±0.07 6.37 ±0.09 7.22 ±0.19 8.03 ±0.23 8.96 ±0.38

Table C.5: RandBET Robustness with Symmetric Quantization: Average RErr and standard
deviation for Clipping and RandBET with wmax = 0.1 and symmetric quantization, i.e., larger
quantization range than asymmetric quantization. Also c.f. Table C.4. Robustness decreases
slightly compared to asymmetric quantization, however, Clipping and RandBET are still
effective in reducing RErr against high bit error rates p.

robustness generalizes to other error models such as L∞ weight perturbations, see caption for
details.

As Clipping adds a hyperparameter, Table C.4 also illustrates that wmax can easily be
tuned based on clean performance. Specifically, lower wmax will eventually increase Err and
reduce confidences (alongside increasing cross-entropy loss). This increase in Err is usually
not desirable except when optimizing for robust performance, i.e., considering RErr. Also, we
found that weight clipping does not (negatively) interact with any other hyperparameters or
regularizers. For example, we use weight clipping in combination with AutoAugment/Cutout
and weight decay without problems. Furthermore, it was not necessary to adjust our training
setup (i.e., optimizer, learning rate, epochs, etc.), even for low wmax.

Figure C.3 presents further supporting evidence for our hypothesis: While RandBET mainly
affects the logits layer, Clipping clearly increases the weight range used by the deep neural
network. Here, the weight range is understood relative to wmax (or the maximum absolute
weight value for Normal).

C.4.4 Random Bit Error Training (RandBET)

Table C.5 shows complementary results for RandBET using symmetric quantization. Symmetric
quantization generally tends to reduce robustness, i.e., increase RErr, across all bit error rates p.
Thus, the positive impact of RandBET is pronounced, i.e., RandBET becomes more important
to obtain high robustness when less robust fixed-point quantization is used. These experiments
also demonstrate the utility of RandBET independent of the quantization scheme at hand.

As ablation for RandBET, we also consider two variants of RandBET motivated by related
work [KOY+19]. Specifically, in [KOY+19], the bit error rate seen during training is increased
slowly during training. Note that [KOY+19] trains on fixed bit error patterns. Thus, increasing
the bit error rate during training is essential to ensure that the deep neural network is robust to
any bit error rate p′ < p smaller than the target bit error rate. While this is generally the case
using our RandBET, Table C.6 shows that slowly increasing the random bit error rate during
training, called “curricular” RandBET, has no significant benefit over standard RandBET. In
fact, RErr increases slightly. Similarly, we found that RandBET tends to increase the range
of weights: the weights are “spread out”, c.f. Figure C.3 (top right). This also increases the
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CIFAR10 (m = 8 bit): RandBET variants
Err

in %
RErr in %

p=0.1 p=1

RandBET p=0.1, wmax = 0.1 4.93 5.67 8.65
RandBET p=1, wmax = 0.1 5.06 5.87 7.60
Curriculum RandBET p=1, wmax = 0.1 4.89 5.78 8.51
Curriculum RandBET p=1, wmax = 0.1 5.32 6.13 7.98
Alternating RandBET p=1, wmax = 0.1 5.07 5.91 8.93
Alternating RandBET p=1, wmax = 0.1 5.24 6.25 8.02

Table C.6: RandBET Variants: Err and RErr for RandBET and two variants: curricular
RandBET, with p being increased slowly from p/20 to p during the first half of training; and
“alternating” RandBET where weight updates increasing quantization range, i.e., increasing
the maximum absolute weight per layer, are not possible based on gradients from perturbed
weights, see Section C.4.4 for details. Both variants decrease robustness slightly. This is in
contrast to, e.g., [KOY+19], using curricular training on profiled bit errors with success.

CIFAR10 (m = 8 bit): ResNet architectures
Err

in %
RErr in %

p=0.5 p=1.5

ResNet-20
RQuant 4.34 13.89 ±2.45 81.25 ±5.08

Clipping0.1 4.83 6.76 ±0.16 11.23 ±0.97

RandBET0.1, p=1 5.28 6.72 ±0.19 8.96 ±0.49

ResNet-50
RQuant 6.81 32.94 ±5.51 90.98 ±0.67

Clipping0.1 5.99 9.27 ±0.44 36.39 ±7.03

RandBET0.1, p=1 6.04 7.87 ±0.22 11.27 ±0.6

Table C.7: RandBET with ResNets: We re-
port RErr for RQuant, Clipping and Rand-
BET using ResNet-20 and ResNet-50. Ac-
cording to Table C.2, Err increases signifi-
cantly when using group normalization for
ResNet-50, explaining the generally higher
RErr. However, using ResNets, Clipping
and RandBET continue to improve robust-
ness significantly, despite a ResNet-50 having
roughly 23.5Mio weights.

quantization range, which has negative impact on robustness. Thus, we experimented with
RandBET using two weight updates per iteration: one using clean weights, one on weights
with bit errors. This is in contrast to averaging both updates as described in Section 6.3.3.
Updates computed from perturbed weights are limited to the current quantization ranges, i.e.,
the maximum absolute error cannot change. This is ensured through projection. This makes
sure that RandBET does not increase the quantization range during training as changes in the
quantization range are limited to updates from clean weights. Again, Table C.6 shows this
variant to perform slightly worse.

Table C.7 also shows results on CIFAR10 using ResNet-20 and ResNet-50. We note that, in
both cases, we use group normalization (GN) instead of batch normalization (BN). ResNet-50,
in particular, suffers from using GN due to the significant depth: the clean Err increases from
3.67% to 6.81% in Table C.2. Nevertheless, Clipping and RandBET remain effective against
random bit errors, even for higher bit error rates of p = 1.5%. This is striking as ResNet-50
consists of roughly 23.5Mio weights, compared to 5.5Mio of the used SimpleNet.

Following the RandBET algorithm outlined in Section 6.3.3, RandBET needs an additional
forward and backward pass during training, increasing training complexity roughly by a factor
of two. In practice, however, we found that training time for RandBET (in comparison with
Clipping) roughly triples. This is due to our custom implementation of bit error injection,
which was not optimized for speed. However, we believe that training time can be reduced
significantly using an efficient CUDA implementation of bit error injection. We also note that
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CIFAR10 (m = 8 bit): per-layer clipping and RandBET robustness
Model Err

in %
RErr in %, p in % p=0.01

0.01 0.05 0.1 0.5 1 1.5

PLClipping1 4.68 4.98 ±0.1 5.52 ±0.16 6.06 ±0.2 13.56 ±2.74 40.72 ±10.6 73.66 ±7.74

PLClipping0.5 4.49 4.73 ±0.06 5.07 ±0.11 5.36 ±0.12 7.76 ±0.48 13.04 ±1.61 23.54 ±4.67

PLClipping0.25 4.78 4.93 ±0.04 5.15 ±0.07 5.32 ±0.1 6.17 ±0.17 7.16 ±0.33 8.25 ±0.56

PLClipping0.2 4.84 4.95 ±0.04 5.08 ±0.05 5.19 ±0.07 5.81 ±0.13 6.48 ±0.2 7.18 ±0.32

PLClipping0.15 5.31 5.41 ±0.03 5.54 ±0.05 5.63 ±0.06 6.06 ±0.08 6.53 ±0.14 6.93 ±0.2

PLClipping0.1 5.62 5.69 ±0.03 5.78 ±0.05 5.86 ±0.05 6.27 ±0.09 6.66 ±0.13 6.96 ±0.16

PLRandBET0.25 p=0.1 4.49 4.62 ±0.04 4.82 ±0.07 4.98 ±0.08 5.80 ±0.16 6.65 ±0.22 7.59 ±0.34

PLRandBET0.25 p=1 4.62 4.73 ±0.03 4.90 ±0.06 5.02 ±0.06 5.62 ±0.13 6.36 ±0.2 7.02 ±0.27

PLRandBET0.1 p=1 5.66 5.76 ±0.03 5.88 ±0.06 5.96 ±0.05 6.29 ±0.09 6.59 ±0.11 6.87 ±0.12

PLRandBET0.25 p=2 4.94 5.06 ±0.04 5.22 ±0.06 5.33 ±0.06 5.92 ±0.13 6.48 ±0.19 7.04 ±0.25

PLRandBET0.1 p=2 5.60 5.67 ±0.02 5.77 ±0.05 5.84 ±0.05 6.20 ±0.09 6.49 ±0.09 6.72 ±0.13

Table C.8: PLClipping and PLRandBET Further Improve Robustness: Err and RErr for
PLClipping and PLRandBET with various configurations of wmax and p used for training.
Compared to Table C.5, reporting results for Clipping and RandBET, i.e., without per-layer
weight clipping, robustness can be improved significantly, while simultaneously reducing
(clean) Err.

inference time remains unchanged. In this respect, bit error mitigation strategies in hardware
are clearly less desirable due to increased inference time, space and energy consumption.

C.4.5 Per-Layer Clipping and RandBET

Table C.8 shows results for PLClipping and PLRandBET considering various bit error rates
p. In comparison to the results in Table C.5, robustness can be improved considerably, while
also improving clean performance. For example, Clipping0.1 (i.e., global) obtains 13.14%
RErr a bit error rate of p = 1.5%. Using PLClipping, this can be improved to 6.96% for
PLClipping0.1. Similarly, RandBET benefits from per-layer clipping. However, the difference
between PLClipping and PLRandBET, considering RErr, is significantly smaller than before.
This illustrates that per-layer weight clipping can have tremendous impact on robustness.

C.4.6 Profiled Bit Errors

Table C.9 shows complementary results for Clipping0.05, RandBET0.05, PLClipping0.15 and
PLRandBET0.15 trained with p = 1.5% and p = 2%, respectively, on all profiled chips. Note
that for particularly extreme cases, such as chip 3, Clipping might perform slightly better
than RandBET, indicating a significantly different bit error distribution as previously assumed.
Nevertheless, PLClipping as well as PLRandBET are able to cope even with particularly
difficult bit error distributions. Overall, PLRandBET generalizes reasonably well, with very
good results on chip 1 and chip 2. Note that, following Figure C.1, the bit errors in chip 2 are
strongly aligned along columns. Results on chip 3 are slightly worse. However, PLRandBET
does not fail catastrophically with only a ∼ 1% increase in RErr compared to chips 1 and 2.

In Table C.10, we consider only stuck-at-0 and stuck-at-1 bit errors (i.e., where p1t0 and p0t1
are 1). Thus, the bit error rates deviate slightly from those reported in Table C.9. Furthermore,
We consider only one weight-to-SRAM mapping, i.e., without offset. PattBET is trained and
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CIFAR10: Generalization to Profiled Bit Errors
RErr in %

Model Err
in %

Chip 1 Chip 2 Chip 3
(CIFAR10) p≈0.86 p≈2.7 p≈0.14 p≈1 p≈0.03 p≈0.5

RQuant 4.32 23.57 89.84 6.00 74.00 5.47 80.49
Clipping0.05 5.44 7.17 10.50 5.98 10.02 5.78 11.88
RandBET0.05 p=1.5 5.62 7.04 9.37 6.00 9.00 5.85 12.44
PLClipping0.15 5.27 6.52 8.48 5.64 8.97 5.52 16.14
PLRandBET0.25, p=1 4.62 6.22 9.81 5.13 8.86 4.91 11.94
PLRandBET0.15, p=2 4.99 6.14 7.58 5.34 7.34 5.19 8.63

Table C.9: Generalization to Profiled Bit Errors: We show RErr on profiled bit errors, chips 1-3,
for RandBET as well as Clipping. Note that for chip 3, Clipping0.05 performs slightly better
than RandBET. However, using per-layer clipping, PLRandBET performs best.

CIFAR10: Fixed Pattern Training
Model (CIFAR10) RErr in %, p in %

Profiled Bit Errors (Chip 1) p≈0.39 p≈1.22
PattBET, p≈1.22 9.52 7.20
PattBET, p≈0.39 5.77 67.87
PattBET0.15, p≈1.22 7.67 6.52
PattBET0.15, p≈0.39 5.94 30.96

CIFAR10: Fixed Pattern Training
Model (CIFAR10) RErr in %, p in %

Profiled Bit Errors (Chip 2) p≈0.1 p≈0.63
PattBET p≈0.63 85.84 10.76
PattBET, p≈0.1 90.56 5.93
PattBET0.15 p≈0.63 12.02 8.70
PattBET0.15 p≈0.1 90.68 6.51

Table C.10: Fixed Pattern Bit Error Training: We report RErr for training on fixed, profiled bit
error patterns (PattBET). Note that for PattBET on chip 1/2 we used only the stuck-at-errors
shown in Figure C.1, which is why the bit error rates deviate from those reported in Table 6.6,
also see Figure C.1.

evaluated on the exact same bit error pattern, but potentially with different bit error rates p.
Note that the bit errors for p′ < p are a subset of those for bit error rate p. Thus, it is surprising
that, on both chips 1 and 2, PattBET trained on higher bit error rates does not even generalize
to lower bit error rates (i.e., higher voltage). This is problematic in practice as the accelerator
should not perform worse when increasing voltage.

C.4.7 Summary Results

Figure C.4 summarizes our results: In contrast to Figure 6.9, we consider individual Clipping
and RandBET models instead of focusing on the best results per bit error rate p. Additionally,
we show our complete results for lower precisions, i.e., m = 4, 3, 2 on CIFAR10 and MNIST.
Moderate Clipping, e.g., using wmax = 0.15 on CIFAR10 (in red solid), has negligible impact
on clean Err (i.e., p = 0 on the x-axis) while improving robustness beyond p = 0.1% bit error
rate. Generally, however, higher robustness is obtained at the cost of increased clean Err, e.g.,
for wmax = 0.05 (in blue dotted). Here, it is important to note that in low-voltage operation,
only RErr matters – clean Err is only relevant for voltages higher than Vmin. Per-layer weight
clipping, i.e., PLClipping, is able to avoid the increase in Err in many cases, while preserving
improved robustness. RandBET further improves robustness, both on top of Clipping and
PLClipping, for high bit error rates while continuing to increase (clean) Err slightly. For
example, RandBET with wmax = 0.05 and trained with p = 2% bit errors increases clean
Err to 5.42% but is also able to keep RErr below 7% up to p = 1% bit error rate (in violet
dotted). While per-layer clipping, i.e., PLClipping0.15 (in yellow), does not improve robustness
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Figure C.4: Summary Results on CIFAR10, CIFAR100 and MNIST. We plot RErr against bit
error rate, highlighting individual Clipping, RandBET, PLClipping and PLRandBET models.
Note that Figure 6.9, in contrast, presents the best, i.e., lowest RErr, model for each bit error rate
p individually. Instead, individual models help to illustrate the involved trade-offs: Clipping
with small wmax or RandBET with high bit error rate p increases the clean Err, thereby also
increasing RErr for very small bit error rates. However, RErr against large bit error rates can be
reduced significantly.

compared to Clipping0.05, clean Err is lowered. More importantly, using PLRandBET0.15 (in
brown) clearly outperforms most other approaches, showing that RandBET is particularly
effective on top of PLClipping, in contrast to “just” Clipping. Similar observations can be
made for MNIST as well as CIFAR100.

The advantage of per-layer clipping, i.e., PLClipping and PLRandBET, are pronounced
when reducing precision. For example, using m = 2, PLClipping not only boosts robustness
significantly, but also avoids a significant increase in Err. As a result, using PLRandBET instead
of PLClipping is only necessary for high bit error rates, e.g., above p = 1%. Similar trade-offs
can be observed on CIFAR100 and MNIST. On CIFAR100, we see that task difficulty also
reduces the bit error rate that is tolerable without significant increase it RErr. Here, p = 0.1%
increases RErr by more than 3%, even with RandBET (and weight clipping). Furthermore,
CIFAR100 demonstrates that Clipping and RandBET are applicable to significantly larger
architectures such as Wide ResNets without problems. On MNIST, in contrast, bit error rates of
up to p = 20% are easily possible. At such bit error rates, the benefit of RandBET is extremely
significant as even Clipping0.025 exhibits very high RErr of 32.68% at p = 20%.
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CIFAR10: Bit Error Robustness in Inputs (RandBET)
Model (CIFAR10) Err

in %
RErr in %

bit errors in inputs, p in % p=0.1 p=0.5

RQuant 4.22 11.10 23.70
Clipping0.25 4.53 11.30 22.70
Clipping0.1 4.81 12.50 25.40
PLClipping0.25 4.92 10.80 22.80
PLClipping0.1 5.73 12.80 26.50

PLRandBET0.75 (weights only), pw=0.1 4.59 10.20 22.20
PLRandBET0.5 (weights only), pw=0.1 4.48 10.90 21.00
PLRandBET0.25 (weights only), pw=0.1 4.46 11.00 22.80
PLRandBET0.5 (weights only), pw=1 5.04 11.00 24.20
PLRandBET0.25 (weights only), pw=1 4.64 11.30 22.40
PLRandBET0.1 (weights only), pw=1 5.63 13.00 25.80

PLRandBET0.25 weights+inputs, pw=0.1, pi=0.1 4.94 7.60 11.70
PLRandBET0.25 weights+inputs, pw=0.1, pi=0.5 4.74 8.00 12.90
PLRandBET0.1 weights+inputs, pw=0.1, pi=0.1 5.94 9.00 15.10
PLRandBET0.1 weights+inputs, pw=0.1, pi=0.5 5.72 8.80 17.50
PLRandBET0.25 weights+inputs, pw=1, pi=0.1 5.57 7.70 9.10
PLRandBET0.25 weights+inputs, pw=1, pi=0.5 5.39 7.60 8.90

PLRandBET0.25 weights+inp.+act., pw=0.1, pi=0.1, pa=0.1 5.16 7.90 12.20
PLRandBET0.25 weights+inp.+act., pw=0.1, pi=0.1, pa=0.5 5.02 7.60 12.00
PLRandBET0.25 weights+inp.+act., pw=1, pi=0.1, pa=0.1 9.09 11.50 13.80
PLRandBET0.25 weights+inp.+act., pw=1, pi=0.1, pa=0.5 8.97 11.10 14.10

Table C.11: Input Robustness for Clipping and PLRandBET. Average RErr for bit errors
in inputs. Images are quantized using m = 8 bit quantization (per channel) in [0, 1], which
does not introduce errors as the images are already provided in 8-bit (per channel). Note that
PLRandBET considers only bit errors in weights during training. We note that Err is reported
on the first 1k test images, to be comparable with RErr for bit errors in inputs. Extreme
Clipping generally reduces robustness to such input perturbations. Similarly, PLRandBET (bit
errors in weights during training) may reduce robustness, indicating that robustness against
bit errors in weights is in conflict with robustness against bit errors in the inputs. Nevertheless,
PLRandBET (training on bit errors in inputs) can improve robustness significantly.

C.4.8 Bit Errors in Activations and Inputs

Bit Errors in Inputs: Table C.11 presents results against random bit errors in inputs (orange).
We report RErr for bit error rates p = 0.1% and p = 0.5%. We emphasize that in these
experiments the weights are not subject to random bit errors. Nevertheless, bit errors in the
inputs can be devastating, resulting in RErr above 20% for Clipping and PLClipping with
p = 0.5%. While 0.5% does not seem like much, it is important to remember that effectively
0.5 · 8 = 4% of pixels are affected. Also, more extreme clipping results in higher RErr, showing
that robustness in weights and inputs might be contradictory to some extent. Similarly,
RandBET on bit errors in weights does not improve robustness. RandBET on bit errors in
weights and inputs, in contrast, can reduce RErr considerably.

Bit Errors in Activations: Table C.12 shows results for random bit errors in activations
(violet). As, by default, we do not train with activation quantization, we report Err w/ and
w/o activation quantization (in m = 8 bits). As can be seen, our simple activation quantization
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CIFAR10: Bit Error Robustness in Activations
Model (CIFAR10) Err

in %
Err in %
(quant.

act.)

RErr in %
8-bit act. quant.,
bit errors in activations, p in %

p=0.1 p=0.5

RQuant 4.32 4.53 8.93 47.12
Clipping0.25 4.58 4.67 7.97 31.98
Clipping0.1 4.82 5.13 7.86 24.38
PLClipping0.25 4.96 5.16 7.38 21.58
PLClipping0.1 5.62 5.84 8.72 27.36

PLRandBET0.75 (weights only), pw=0.1 4.57 4.78 8.74 38.99
PLRandBET0.5 (weights only), pw=0.1 4.48 4.79 7.46 27.67
PLRandBET0.25 (weights only), pw=0.1 4.49 4.71 7.25 24.94
PLRandBET0.5 (weights only), pw=1 5.11 5.33 8.10 26.90
PLRandBET0.25 (weights only), pw=1 4.62 4.83 6.92 19.83
PLRandBET0.1 (weights only), pw=1 5.66 5.92 9.31 35.79

PLRandBET0.25 activations only, pa=0.1 4.73 4.84 6.40 12.10
PLRandBET0.25 activations only, pa=0.5 5.43 5.68 6.74 10.16
PLRandBET0.1 activations only, pa=0.1 5.92 6.09 7.56 12.62
PLRandBET0.1 activations only, pa=0.5 6.52 6.63 7.77 10.81

PLRandBET0.25 weights+act., pw=1, pa=0.1 7.59 7.80 8.88 11.79
PLRandBET0.25 weights+act., pw=1, pa=0.5 7.66 7.89 9.09 12.17
PLRandBET0.25 weights+act., pw=1, pa=1 7.68 7.83 9.05 12.07

PLRandBET0.25 weights+inp.+act., pw=1, pi=0.1, pa=0.1 9.16 9.31 10.54 13.51
PLRandBET0.25 weights+inp.+act., pw=1, pi=0.1, pa=0.5 9.01 9.32 10.56 13.65

Table C.12: Activation Robustness for Clipping and PLRandBET. Average RErr for bit errors
in activations; the same m = 8 bit quantization is used for weights and activations. PLRandBET
considers only bit errors in weights during training. We note that activation quantization
without bit errors has negligible impact on Err. However, when training on bit errors in
activations, Err may increase similarly as with bit errors in the weights. Regarding robustness
against bit errors in activations, Clipping and PLRandBET improve robustness, however,
extreme clipping or RandBET with large bit error rates in the weights reduces robustness.

leads to a slight increase of 0.2 to 0.3% in Err. Bit errors in activations turn out to be difficult
to handle, even for Clipping and PLClipping. In contrast to bit errors in inputs, weight
clipping has a positive effect on robustness against bit errors in activations. However, the
benefit is less pronounced than for bit errors in weights, e.g., PLClipping does not improve
over Clipping. Similarly, RandBET with bit errors in weights can improve robustness, but
does not so consistently, see the variations in RErr for RandBET (weights only) in Table C.12.
RandBET with bit errors in activations, in contrast, has the expected effect of reducing RErr
considerably, allowing reasonably low RErr for p = 0.1%.

C.4.9 Adversarial Bit Error Attack

Table C.14 presents a comprehensive ablation study regarding our adversarial bit error attack.
We report RErr on MNIST and CIFAR10, considering an additional MNIST-like architecture
and an architecture with “halved channels” on CIFAR10. Specifically, considering Table C.1,
the MNIST-like architecture is the same architecture as used for MNIST, but using a larger first
convolutional layer (conv1) due to the larger input dimensionality on CIFAR10. Specifically,
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Err % RErr in %

MNIST ϵ=80 ϵ=160 ϵ=240 ϵ=320
RQuant 0.37 91.08 91.08 91.08 91.08
Clipping0.05 0.38 85.09 88.81 90.11 90.26
RandBET0.05, p=20 0.39 10.13 69.90 81.16 81.94
AdvBET0.05, ϵ=160 0.33 11.63 21.08 31.71 61.01
AdvBET0.05, ϵ=240 0.32 66.92 82.83 85.12 87.98
AdvBET0.05, ϵ=320 0.27 10.41 85.73 85.57 88.12
AdvBET0.05 (mom 0.9), ϵ=160 0.29 10.37 86.12 84.83 87.28
AdvBET0.05 (mom 0.9), ϵ=240 0.29 11.58 21.66 41.27 50.73
AdvBET0.05 (mom 0.9), ϵ=320 0.30 10.38 21.76 39.92 69.61
AdvBET0.05 T, ϵ=160 0.39 10.54 21.41 29.72 49.77
AdvBET0.05 T, ϵ=240 0.36 10.10 19.44 31.23 51.01
AdvBET0.05 T, ϵ=320 0.36 10.51 19.72 31.28 50.77

CIFAR10 ϵ=160 ϵ=320 ϵ=480 ϵ=640
RQuant 4.89 91.18 91.18 91.18 91.18
Clipping0.05 5.34 20.48 60.76 79.12 83.93
RandBET0.05, p=2 5.42 14.66 33.86 54.24 80.36
AdvBET0.05, ϵ=160 5.54 15.20 26.22 55.06 77.43
AdvBET0.05, ϵ=320 5.78 15.27 42.79 70.56 91.13
AdvBET0.05, ϵ=480 5.99 15.41 44.66 83.39 91.47
AdvBET0.05, ϵ=640 6.49 15.90 33.79 70.61 90.48

Table C.13: Adversarial Bit Error Robustness on MNIST and CIFAR10. We provide additional
results regarding RErr for RQuant, Clipping RandBET and AdvBET on MNIST and CIFAR10.
We evaluate adversarial bit error robustness for various ϵ and also train AdvBET with different
ϵ. On MNIST, we also present an ablation when training AdvBET against attacks with or
without momentum 0.9 or with targeted attack (“T”). As targeted attacks are generally more
effective, this also helps improve robustness using AdvBET. On CIFAR10, we found AdvBET
with ϵ > 160 to reduce robustness. We suspect that training gets more difficult and might
require additional capacity or more sophisticated training schemes.

the number of weights in conv1 increase from 288 to 864 (factor 3 due to 3 input channels on
CIFAR10). Then, we consider the CIFAR10 architecture but with all channel widths halved
(similar to MNIST). These two architecture result in roughly 1Mio and 1.3Mio weights. While
attacks on all weights (targeted or untargeted) are not very effective on MNIST, compared to
attacks on conv1 or logit layer, the models on CIFAR10 are more vulnerable in this regard,
especially RQuant. However, even on CIFAR10, the conv1 and logit layers are most susceptible
to bit errors. Attacking all other layers (i.e., all layers except conv1 and logit), in contrast, is not
very fruitful in terms of increasing RErr, especially considering Clipping. Only AdvBET is
able to reduce the vulnerability of these layers. Interestingly, Clipping0.05 is more robust on
CIFAR10, even when using the MNIST-like architecture. Here, for ϵ=160, RErr is 58.09% on
MNIST but only 50.4% on CIFAR10. As the only difference between both models is the larger
first convolutional layer conv1 on CIFAR10, this further supports our experiments showing
that conv1 is particularly vulnerable. In all cases, targeted attacks are more successful.
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DConfidence-Calibrated Adversarial Training:
Generalizing to Unseen Attacks

D.1 PGD with Momentum and Backtracking

Algorithm 7 summarizes PGD with momentum and backtracking for an individual input
example x considering the L∞ norm. The algorithm is easily adapted for batches of inputs and
other Lp norms.

Algorithm 7 Projected Gradient Descent (PGD) with Backtracking. Pseudocode for the used
PGD procedure using momentum and backtracking subject to the constraints x̃i = xi + δi ∈
[0, 1] and ∥δ∥∞ ≤ ϵ. In practice, the procedure is applied on batches of inputs. The algorithm
is easily adapted to work with arbitrary Lp-norm; only the projections on Line 7 and 7 as well
as the normalized gradient in Line 7 need to be adapted.

1: input: iterations T, learning rate γ, momentum β, learning rate factor α, initial δ(0)

2: x̃ := x + δ(0) {best adversarial example obtained}
3: v := 0, g(−1) := 0 {best objective v and accumulated gradients g}
4: for t = 0, . . . , T do
5: clip δ

(t)
i to [−ϵ, ϵ], clip xi + δ

(t)
i to [0, 1] {projection onto L∞ ϵ-ball and [0, 1]}

6: v(t) := F (x + δ(t), y) {forward and backward pass, see Equation (7.2) or Equation (7.4)}
7: g(t) := sign

(
∇δ(t)F (x + δ(t), y)

)
8: if v(t) > v then
9: x̃ := x + δ(t), v := v(t) {keep track of adversarial example resulting in best objective}

10: end if
11: if t = T then
12: break {iteration T is only meant to check whether last update improved objective}
13: end if
14: g(t) := βg(t−1) + (1 − β)g(t) {integrate momentum term}
15: δ̂(t) := δ(t) + γg(t) {“try” the update step and see if objective increases}
16: clip δ̂

(t)
i to [−ϵ, ϵ], clip xi + δ̂

(t)
i to [0, 1]

17: v̂(t) := F (x + δ̂(t), y)
18: if v̂(t) ≥ v(t) then
19: δ(t+1) := δ̂(t) {only keep the update if the objective increased}
20: else
21: γ := γ/α {decrease learning rate otherwise}
22: end if
23: end for
24: return x̃, ṽ

259



260 chapter d. confidence-calibrated adversarial training

D.2 Attack Initialization

Deviating from [MMS+18], we initialize δ uniformly over directions and norm (instead of
uniform initialization over the volume of the ϵ-ball):

δ = uϵ
δ′

∥δ′∥∞
, δ′ ∼ N (0, I), u ∼ U(0, 1) (D.1)

where δ′ is sampled from a standard Gaussian and u ∈ [0, 1] from a uniform distribution.
We also consider zero initialization, i.e., δ = 0. For random initialization we always consider
multiple restarts, 10 for PGD-Conf and 50 for PGD-CE; for zero initialization, we use 1 restart.

D.3 ROC AUC and Computing Confidence Threshold

To compute receiver operating characteristic (ROC) curves, and the area under the curve, i.e.,
ROC AUC, we define negatives as successful adversarial examples (corresponding to correctly
classified test examples) and positives as the corresponding correctly classified test examples.
The ROC AUC as well as the curve itself can easily be calculated using scikit-learn [PVG+11].
Practically, the generated curve could be used to directly estimate a threshold corresponding
to a pre-determined true positive rate (TPR). However, this requires interpolation and after
trying several interpolation schemes, we concluded that the results are distorted significantly,
especially for TPRs close to 100%. Thus, we follow a simpler scheme: on a held out validation
set of size 1000 (the last 1000 samples of the test set), we sorted the corresponding confidences,
and picked the confidence threshold in order to obtain (at least) the desired TPR, e.g., 99%.

In Section 7.3, instead of reporting ROC AUC, we reported only confidence-thresholded
robust test error (RErr), which implicitly subsumes the false positive rate (FPR), at a confidence
threshold of 99%TPR. Again, we note that this is an extremely conservative choice, allowing
to reject at most 1% correctly classified clean examples. In addition, comparison to other
approaches is fair as the corresponding confidence threshold only depends on correctly
classified clean examples, not on adversarial examples. As also seen in Figure D.1, ROC AUC

MNIST (worst-case of L∞ attacks with ϵ = 0.3)
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Figure D.1: ROC and RErr Curves. ROC curves, i.e. FPR plotted against TPR for all possible
confidence thresholds τ, and (confidence-thresholded) RErr curves, i.e., RErr over confidence
threshold τ for AT and CCAT, including different ρ parameters. Worst-case adversarial
examples across all L∞ attacks with ϵ = 0.3 (MNIST) and ϵ = 0.03 (Cifar10) were tested.
For evaluation, the confidence threshold τ is fixed at 99%TPR, allowing to reject at most 1%
correctly classified clean examples.
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MNIST: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ϵ = 0.3 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 0.4 0.4 0.4 0.3 0.6 0.4 0.6 0.4 0.4
AT Conf (AT trained with PGD-Conf) 0.8 0.8 0.8 0.8 1.1 1.0 1.1 1.0 1.0
CCAT 0.2 1.4 4.6 4.6 3.7 0.7 0.7 0.2 0.2

SVHN: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ϵ = 0.03 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 38.4 46.2 49.9 50.1 51.8 37.7 38.1 29.9 30.8
AT Conf (AT trained with PGD-Conf) 27.4 40.5 46.9 47.3 48.1 27.1 28.5 21.1 23.8
CCAT 4.0 5.0 22.8 23.3 5.2 2.6 2.6 2.6 2.6

CIFAR10: Attack Ablation with confidence-thresholded RErr in % for τ@99%TPR
(L∞ attack with ϵ = 0.03 for training and testing)

Optimization momentum+backtrack mom –
Initialization zero rand zero zero
Iterations 40 200 1000 2000 2000 60 300 60 300

AT 60.9 60.8 60.8 60.8 60.9 60.9 60.9 57.4 57.6
AT Conf (AT trained with PGD-Conf) 60.4 60.6 60.5 60.5 60.9 60.4 60.6 56.2 56.6
CCAT 14.8 16.2 40.2 41.3 34.9 7.2 7.2 7.2 7.2

Table D.1: Detailed Attack Ablation Studies. We compare our L∞ PGD-Conf attack with T
iterations and different combinations of momentum, backtracking and initialization on all three
datasets. We consider AT, AT trained with PGD-Conf (AT Conf), and CCAT and report RErr
for confidence threshold τ@99%TPR. As backtracking requires an additional forward pass per
iteration, we use T = 60 and T = 300 for attacks without backtracking to be comparable to
attacks with T = 40 and T = 200 with backtracking. Against CCAT, T = 1000 iterations or
more are required and backtracking is essential to achieve high RErr. AT, in contrast, is “easier”
to attack, requiring less iterations and less sophisticated optimization.

is not a practical metric to evaluate the detection/rejection of adversarial examples. This is
because rejecting a significant part of correctly classified clean examples is not acceptable.
In this sense, ROC AUC measures how well positives and negatives can be distinguished in
general, while we are only interested in the performance for very high TPR, e.g., 99%TPR. In
Table D.3 to D.5, we report FPR alongside RErr for different TPRs.

D.3.1 Ablation Study

In the following, we include ablation studies for our attack PGD-Conf, in Table D.1, and for
CCAT, in Table D.2.

Attack: Regarding the proposed attack PGD-Conf using momentum and backtracking, Ta-
ble D.1 shows that backtracking and sufficient iterations are essential to attack CCAT. On
SVHN, for AT, the difference in RErr between T = 200 and T = 1000 iterations is only 3.7%,
specifically, 46.2% and 49.9%. For CCAT, in contrast, using T = 200 iterations is not sufficient,
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SVHN: Training Ablation for Detection (τ@99%TPR) and Standard Settings (τ = 0)
(L∞ attack with ϵ = 0.03 during training and testing)

Detection Setting
τ@99%TPR

Standard Setting
τ = 0

ROC
AUC

Err
in %

RErr
in %

Err
in %

RErr
in %

Normal 0.17 2.6 99.9 3.6 99.9
AT 0.55 2.5 54.9 3.4 56.9
AT Conf (AT trained with PGD-Conf) 0.61 2.8 52.5 3.7 58.7
CCAT, ρ = 1 0.74 2.2 43.0 2.7 82.4
CCAT, ρ = 2 0.68 2.1 44.2 2.9 79.6
CCAT, ρ = 4 0.68 1.8 35.8 2.7 80.4
CCAT, ρ = 6 0.64 1.8 32.8 2.9 72.1
CCAT, ρ = 8 0.63 2.2 42.3 2.9 84.6
CCAT, ρ = 10 0.67 2.1 38.5 2.9 91.0
CCAT, ρ = 12 0.67 1.9 36.3 2.8 81.8

CIFAR10: Training Ablation for Detection (τ@99%TPR) and Standard Settings (τ = 0)
(L∞ attack with ϵ = 0.03 during training and testing)

Detection Setting
τ@99%TPR

Standard Setting
τ = 0

ROC
AUC

Err
in %

RErr
in %

Err
in %

RErr
in %

Normal 0.20 7.4 100.0 8.3 100.0
AT 0.65 15.1 60.9 16.6 61.3
AT Conf (AT trained with PGD-Conf) 0.63 15.1 61.5 16.1 61.7
CCAT, ρ = 1 0.63 8.7 72.4 9.7 95.3
CCAT, ρ = 2 0.60 8.4 70.6 9.7 95.1
CCAT, ρ = 4 0.61 8.6 66.3 9.8 93.5
CCAT, ρ = 6 0.54 8.0 69.8 9.2 94.1
CCAT, ρ = 8 0.58 8.5 65.3 9.4 93.2
CCAT, ρ = 10 0.60 8.7 63.0 10.1 95.0
CCAT, ρ = 12 0.62 9.4 63.0 10.1 96.6

Table D.2: Training Ablation Studies. We report unthresholded RErr and Err, i.e., τ = 0
(“Standard Setting”), and τ@99%TPR as well as ROC AUC (“Detection Setting”) for CCAT with
various values for ρ. The models are tested against our L∞ PGD-Conf attack with T = 1000
iterations and zero as well as random initialization. On Cifar10, ρ = 10 works best and
performance stagnates for ρ > 10. On SVHN, we also use ρ = 10, although ρ = 6 shows better
results.

with merely 5% RErr. However, T = 1000 iterations with zero initialization increases RErr to
22.8%. For more iterations, i.e., T = 2000, RErr stagnates with 23.3%. When using random
initialization (one restart), RErr drops to 5.2%, even when using T = 2000 iterations. Similar
significant drops are observed without backtracking. These observations generalize to MNIST
and Cifar10.

Training: Table D.2 reports results for CCAT with different values for ρ. We note that ρ
controls the (speed of the) transition from (correct) one-hot distribution to uniform distribution
depending on the distance of adversarial example to the corresponding original training
example. Here, higher ρ results in a sharper (i.e., faster) transition from one-hot to uniform
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distribution. It is also important to note that the power transition does not preserve a bias
towards the true label, i.e., for the maximum possible perturbation (∥δ∥∞ = ϵ), the network is
forced to predict a purely uniform distribution. As can be seen, both on SVHN and Cifar10,
higher ρ usually results in better robustness. Thus, we chose ρ = 10. Only on SVHN, ρ = 6 of
ρ = 12 perform slightly better. However, we found that ρ = 10 generalizes better to previously
unseen attacks.

D.4 All Results

Table D.3 shows FPR corresponding to the results in Table 7.2. Table D.4 reports our main results
requiring only 98%TPR; Table D.5 shows results for 95%TPR. This implies, that compared to
99%TPR, up to 1% (or 4%) more correctly classified test examples can be rejected, increasing
the confidence threshold and potentially improving robustness. For relatively simple tasks
such as MNIST and SVHN, where Err is low, this is a significant “sacrifice”. However, as can
be seen, robustness in terms of RErr only improves slightly. We found that the same holds for
95%TPR, however, rejecting more than 2% of correctly classified examples seems prohibitive
large for the considered datasets.
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MNIST: FPR and RErr in % for τ@99%TPR
L∞

ϵ = 0.3
L∞

ϵ = 0.4
L2

ϵ = 3
L1

ϵ = 18
L0

ϵ = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.3 100.0 91.6 92.3 87.0 87.7
AT-50% 1.0 1.7 99.3 100.0 80.7 81.5 23.8 24.6 23.0 23.9 72.9 73.7
AT-100% 1.0 1.7 99.2 100.0 83.9 84.8 20.2 21.3 12.9 13.9 61.3 62.3
CCAT 6.9 7.4 11.4 11.9 0.0 0.3 1.3 1.8 14.2 14.8 0.0 0.2

* MSD 32.1 34.3 96.7 98.9 57.0 59.2 53.7 55.9 64.2 66.4 6.6 8.8
* TRADES 3.4 4.0 99.3 99.9 43.6 44.3 8.2 9.0 34.6 35.5 0.0 0.2

SVHN: FPR and RErr in % for τ@99%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 95.8 99.9 95.9 100.0 95.9 100.0 95.9 100.0 79.6 83.7 74.6 78.7
AT-50% 52.3 56.0 84.7 88.4 95.7 99.4 95.8 99.5 70.0 73.6 30.0 33.6
AT-100% 42.1 48.3 80.9 87.1 93.3 99.5 93.6 99.8 83.1 89.4 19.9 26.0
CCAT 35.5 39.1 49.5 53.1 25.4 29.0 28.1 31.7 0.4 3.5 1.0 3.7

* LID 87.1 91 89.2 93.1 96.1 92.2 85.7 90 37.6 41.6 85.1 89.8
* MAHA 68.6 73 75.2 79.5 73.2 78.1 63.2 67.5 36.9 41.5 6.3 9.9

CIFAR10: FPR and RErr in % for τ@99%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓ FPR↓ RErr ↓
Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 77.7 84.7 89.7 96.7
AT-50% 47.6 62.7 78.6 93.7 83.3 98.4 83.3 98.4 59.3 74.4 63.6 78.7
AT-100% 42.3 59.9 72.7 90.3 80.7 98.3 80.4 98.0 54.7 72.3 62.0 79.6
CCAT 59.9 68.4 83.9 92.4 43.7 52.2 50.3 58.8 14.4 23.0 57.4 66.1

* MSD 35.3 53.2 71.5 89.4 70.6 88.5 50.7 68.6 21.4 39.2 64.7 82.6
* TRADES 28.9 43.5 66.4 81.0 56.3 70.9 82.3 96.9 22.3 36.9 57.5 72.1
* AT-Madry 33.8 45.1 73.2 84.5 87.4 98.7 86.5 97.8 31.0 42.3 62.0 73.3

* LID 92.7 99 92.9 99.2 64 70.6 82.9 89.4 40.6 47 59.9 66.1
* MAHA 87.7 94.1 89 95.3 84.2 90.6 91.3 97.6 43.5 49.8 64.1 70

Table D.3: Main Results: FPR for 99%TPR. For 99%TPR, we report confidence-thresholded
RErr and FPR. We emphasize that only PGD-CE and PGD-Conf were used against LID and
MAHA. In general, the observations of Section 7.4 can be confirmed considering FPR. Due to
the poor Err of AT, MSD or TRADES on Cifar10, these methods benefit most from considering
FPR instead of (confidence-thresholded) RErr. * Pre-trained models with different architectures.
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MNIST: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ϵ = 0.3
L∞

ϵ = 0.4
L2

ϵ = 3
L1

ϵ = 18
L0

ϵ = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.3 100.0 87.3 88.1 79.8 80.5
AT-50% 0.5 0.8 99.3 100.0 66.7 67.9 16.3 17.5 16.1 17.2 61.3 62.5
AT-100% 0.6 1.3 99.2 100.0 77.3 78.3 16.9 18.0 9.2 10.2 52.6 53.7
CCAT 5.2 5.7 8.8 9.3 0.0 0.2 0.6 0.9 7.6 8.1 0.0 0.1

* MSD 28.8 31.0 96.6 98.8 53.9 56.2 51.3 53.5 61.5 63.7 4.4 6.6
* TRADES 1.2 1.9 99.1 99.7 31.6 32.6 4.3 5.1 28.0 29.7 0.0 0.1

distal

unseen
FPR

100.0
100.0
100.0

0.0

100.0
100.0

corr.
MNIST-C

unseen
Err

31.0
12.3
15.4
5.3

5.6
5.7

SVHN: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 95.7 99.8 95.9 100.0 95.9 100.0 95.9 100.0 72.7 76.8 72.4 76.5
AT-50% 50.0 53.7 83.4 87.1 95.5 99.2 95.7 99.4 54.0 57.9 26.8 30.6
AT-100% 42.1 48.3 80.9 87.1 93.3 99.5 93.6 99.8 82.2 88.8 19.3 25.1
CCAT 34.0 37.6 40.5 44.1 20.3 23.9 25.0 28.6 0.2 2.6 0.1 2.2

distal

unseen
FPR

87.1
86.3
81.0
0.0

CIFAR10: FPR and confidence-thresholded RErr in % for τ@98%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 70.1 77.1 89.6 96.6
AT-50% 47.6 62.7 78.6 93.7 83.3 98.4 83.3 98.4 57.2 72.4 63.6 78.7
AT-100% 42.1 59.7 72.7 90.3 80.7 98.3 80.4 98.0 52.1 70.0 62.0 79.6
CCAT 59.4 67.9 83.5 92.0 43.3 51.8 50.0 58.5 11.7 20.3 56.4 65.1

* MSD 35.1 53.0 71.5 89.4 69.9 87.8 50.6 68.5 17.8 35.8 64.7 82.6
* TRADES 28.9 43.5 66.4 81.0 56.2 70.8 82.3 96.9 21.9 36.4 57.4 72.0
* AT-Madry 33.6 44.9 73.2 84.5 87.4 98.7 86.5 97.8 30.8 42.0 61.9 73.2

corr.

unseen
FPR

83.3
75.0
72.5
0.0

76.7
76.2
78.5

corr.
CIFAR10-C

unseen
Err

11.4
15.1
17.8
8.1

17.1
14.1
11.4

Table D.4: Main Results: Generalizable Robustness for 98%TPR. While reporting results for
99%TPR in Section 7.4, reducing the TPR requirement for confidence-thresholding to 98%TPR
generally improves results, but only slightly. We report FPR and confidence-thresholded RErr
for 98%TPR. For MNIST-C and Cifar10-C, we report mean Err across all corruptions. L∞
attacks with ϵ=0.3 on MNIST and ϵ = 0.03 on SVHN/Cifar10 were used for training (seen).
All other attacks were not used during training (unseen). * Pre-trained models with different
architectures.
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MNIST: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ϵ = 0.3
L∞

ϵ = 0.4
L2

ϵ = 3
L1

ϵ = 18
L0

ϵ = 15
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 99.3 100.0 99.3 100.0 99.3 100.0 99.0 99.7 75.6 76.7 65.9 67.0
AT-50% 0.2 0.4 99.3 100.0 54.6 56.7 12.3 13.7 11.1 12.3 47.3 49.2
AT-100% 0.2 0.9 99.2 100.0 63.9 65.6 10.7 12.4 3.6 4.4 35.0 37.2
CCAT 3.1 3.7 5.7 6.3 0.0 0.1 0.0 0.1 2.0 2.2 0.0 0.1

* MSD 22.0 24.6 95.0 97.2 44.0 46.8 42.1 44.6 54.5 57.3 2.3 4.4
* TRADES 0.6 1.0 98.1 98.8 16.5 18.3 2.1 2.7 21.4 24.0 0.0 0.0

distal

unseen
FPR

100.0
100.0
100.0

0.0

100.0
100.0

corr.
MNIST-C

unseen
Err

27.5
8.6
10.5
5.5

4.4
3.2

SVHN: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 95.6 99.7 95.9 100.0 95.9 100.0 95.9 100.0 65.3 69.5 66.8 71.1
AT-50% 45.5 49.2 79.7 83.4 95.4 99.1 95.5 99.2 34.8 38.9 21.5 25.5
AT-100% 40.5 46.9 80.9 87.1 93.3 99.5 93.6 99.8 78.5 85.5 15.9 21.7
CCAT 32.8 36.5 38.6 42.2 16.5 20.3 21.1 24.9 0.0 1.2 0.0 1.2

distal

unseen
FPR

87.1
59.3
75.1
0.0

CIFAR10: FPR and confidence-thresholded RErr in % for τ@95%TPR
L∞

ϵ = 0.03
L∞

ϵ = 0.06
L2

ϵ = 2
L1

ϵ = 24
L0

ϵ = 10
adv.

frames
seen unseen unseen unseen unseen unseen

FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr FPR RErr

Normal 93.0 100.0 93.0 100.0 93.0 100.0 93.0 100.0 52.0 59.0 88.8 95.9
AT-50% 46.6 61.7 78.6 93.7 83.3 98.4 83.3 98.4 43.9 59.6 62.8 77.9
AT-100% 41.3 59.1 72.7 90.3 80.6 98.2 80.4 98.0 47.2 65.3 62.0 79.7
CCAT 57.4 66.0 80.8 89.3 39.7 48.2 48.9 57.4 3.6 11.1 50.8 59.7

* MSD 32.8 50.9 71.5 89.4 67.7 85.6 49.1 67.3 11.4 28.4 64.2 82.2
* TRADES 26.5 41.3 66.1 80.7 53.9 68.5 82.3 96.9 17.6 32.0 56.4 71.1
* AT-Madry 32.4 43.9 73.2 84.5 87.4 98.7 86.5 97.8 28.6 40.1 61.5 72.8

corr.

unseen
FPR

83.3
75.0
72.5
0.0

76.7
76.2
78.5

corr.
CIFAR10-C

unseen
Err

7.7
12.1
15.6
6.0

13.7
10.7
9.1

Table D.5: Main Results: Generalizable Robustness for 95%TPR. We report FPR and RErr for
95%TPR, in comparison with 98% in Table D.4. For MNIST-C and Cifar10-C, we report mean
Err across all corruptions. L∞ attacks with ϵ=0.3 on MNIST and ϵ = 0.03 on SVHN/Cifar10
seen during training; all other attacks unseen during training. Results improve slightly in
comparison with 98%TPR. However, the improvements are rather small and do not justify
the significantly increased fraction of “thrown away” (correctly classified) clean examples. *
Pre-trained models with different architectures.



ELearning Optimal Conformal Classifiers

E.1 Experimental Setup

Datasets and Splits: We consider Camelyon2016 [BVvD+17], GermanCredit [DG17], WineQual-
ity [CCA+09], MNIST [LBBH98], EMNIST [CATvS17], Fashion-MNIST [CATvS17] and CIFAR
[Kri09] with a fixed split of training, calibration and test examples. Table E.1 summarizes key
statistics of the used datasets which we elaborate on in the following. Except Camelyon, all
datasets are provided by Tensorflow [AAB+15]1. For Camelyon, we use the pre-computed
features of [WHK20] which are based on open source code from the Camelyon2016 challenge2.
On Camelyon, we use the original training set, but split test examples into 100 validation and 17
test examples. This is because less than 100 calibration examples are not meaningful for α=0.05.
As we evaluate 10 random calibration/test splits, the few test examples are not problematic
in practice. On GermanCredit, we manually created training/calibration/test splits, roughly
matching 70%/10%/20%, following WineQuality. We take the first 122.8k examples, split as in
Table E.1.

Models and Training: We consider linear models, multi-layer perceptrons (MLPs) and
ResNets [HZRS16a] as shown in Table E.1. Specifically, we use a linear model on MNIST
and GermanCredit, 1- or 2-layer MLPs on Camelyon2016, WineQuality and Fashion-MNIST,
and ResNet-34/50 [HZRS16a] on CIFAR10/100. Models and training are implemented in Jax
[BFH+18]3 and the ResNets follow the implementation and architecture provided by Haiku

1https://www.tensorflow.org/datasets
2https://github.com/arjunvekariyagithub/camelyon16-grand-challenge
3https://github.com/google/jax

Dataset Statistics
Dataset Train Cal Test Dimensions Classes Epochs Model

Camelyon2016* [BVvD+17] 280 100 17 31 2 100 1-layer MLP
GermanCredit [DG17] 700 100 200 24 2 100 Linear
WineQuality [CCA+09] 4500 500 898 11 2 100 2-layer MLP
MNIST [LBBH98] 55k 5k 10k 28 × 28 10 50 Linear
EMNIST** [CATvS17] 98.8k 5.2k 18.8k 28 × 28 52 75 2-layer MLP
Fashion-MNIST [XRV17] 55k 5k 10k 28 × 28 10 150 2-layer MLP
CIFAR10 [Kri09] 45k 5k 10k 32 × 32 × 3 10 150 ResNet-34
CIFAR100 [Kri09] 45k 5k 10k 32 × 32 × 3 100 150 ResNet-50

Table E.1: Used Datasets: Summary of train/calibration/test splits, epochs and models used
on all datasets in our experiments. The calibration set is usually 10% or less of the training
set. On most datasets, the test set is roughly two times larger than the calibration set. When
computing random calibration/test splits for evaluation, see text, the number of calibration and
test examples stays constant. * On Camelyon, we use features provided by [WHK20] instead of
the original images. ** For EMNIST, we use a custom subset of the “byClass” split.
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ConfTr Hyperparameters (for ThrLP during training and Thr at test time)

Dataset, Method
Batch
Size

Learning
rate

Temp.
T

Size
weight λ

κ in Equation (8.6)

Camelyon, ConfTr 20 0.005 0.1 5 1
Camelyon, ConfTr +Lclass 0.01 10 0.01 5 1
GermanCredit, ConfTr 200 0.05 1 5 1
GermanCredit, ConfTr +Lclass 400 0.05 0.1 5 1
WineQuality, ConfTr 100 0.005 0.5 0.05 1
WineQuality, ConfTr +Lclass 100 0.005 0.1 0.5 1
MNIST, ConfTr 500 0.05 0.5 0.01 1
MNIST, ConfTr +Lclass 100 0.01 1 0.5 1
EMNIST, ConfTr 100 0.01 1 0.01 1
EMNIST, ConfTr +Lclass 100 0.01 1 5 1
Fashion-MNIST, ConfTr 100 0.01 0.1 0.01 0
Fashion-MNIST, ConfTr +Lclass 100 0.01 0.1 0.5 1
CIFAR10, fine-tune ConfTr 500 0.01 1 0.05 0
CIFAR10, fine-tune ConfTr +Lclass 500 0.05 0.1 1 1
CIFAR10, “extend” ConfTr 100 0.01 1 0.005 0
CIFAR10, “extend” ConfTr +Lclass 500 0.05 0.1 0.1 1
CIFAR100, fine-tune ConfTr 100 0.005 1 0.005 0
CIFAR100, fine-tune ConfTr +Lclass 100 0.005 1 0.01 1

Table E.2: Used ConfTr Hyperparameters with and without Lclass for ThrLP during training
and Thr at test time. The hyperparameters for APS at test time might vary slightly from those
reported here. The exact grid search performed to obtained these hyperparameters can be
found in the text. Note that, while hyperparameters fluctuate slightly, λ needs to be chosen
higher when training with Lclass. Additionally, and in contrast to Bel, κ = 1 in Equation (8.6)
performs better, especially combined with Lclass. Note that dispersion for smooth sorting is
fixed to ϵ = 0.1.

[HCNB20]4. Our l-layer MLPs comprise l hidden layers. We use 32, 256, 128, 64 units per
hidden layer on Camelyon, WineQuality, EMNIST and Fashion-MNIST, respectively. These
were chosen by grid search over {16, 32, 64, 128, 256}. The baseline models are trained with
cross-entropy loss, while ConfTr follows Algorithm 5 and CoverTr follows Algorithm 6. The
epochs are listed in Table E.1 and we follow a multistep learning rate schedule, multiplying the
initial learning rate by 0.1 after 2/5, 3/5 and 4/5 of the epochs. We use Haiku’s default initializer.
On CIFAR, we apply whitening using the per-channel mean and standard deviation computed
on the training set. On the non-image datasets (Camelyon, GermanCredit, WineQuality), we
whiten each feature individually. On MNIST, EMNIST and Fashion-MNIST, the input pixels
are just scaled to [−1, 1].

Fine-Tuning on CIFAR: On CIFAR10 and CIFAR100, we train base ResNet-34/ResNet-50
models which are then fine-tuned using Bel, CoverTr or ConfTr. We specifically use a ResNet-34
with only 4 base channels to obtain an accuracy of 82.6%, using only random flips and crops
as data augmentation. The rationale is to focus on the results for CP at test time, without
optimizing accuracy of the base model. On CIFAR100, we use 64 base channels for the ResNet-
50 and additionally employ AutoAugment [CZM+19] and Cutout [DT17] as data augmentation.
This model obtains 73.64% accuracy. These base models are trained on 100% of the training
examples (without calibration examples). We also consider “extending” the ResNet by training

4https://github.com/deepmind/dm-haiku

https://github.com/deepmind/dm-haiku
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MNIST: test trials, Cover/Ineff for Thr
Method Acc Cover Ineff

Baseline 92.45 99.09±0.2 2.23±0.15
ConfTr 90.38 99.05±0.2 2.14±0.13
ConfTr +Lclass 91.14 99.03±0.19 2.09±0.12

MNIST: Training trials, Cover/Ineff for Thr
Method Acc Cover Ineff

Baseline 92.4±0.06 99.09±0.8 2.23±0.01
ConfTr 90.2±0.12 99.03±0.22 2.18±0.025
ConfTr +Lclass 91.2±0.05 99.05±0.21 2.11±0.028
ConfTr with APS 87.9±4.81 99.09±0.29 5.79±3.1

Table E.3: Importance of Random Trials: We report coverage and inefficiency with the
corresponding standard deviation across 10 test (left) and 10 training trials (right). ConfTr was
trained using ThrLP if not stated otherwise. For test trials, a fixed model is used. Results for
training trials additionally include 10 test trials, but the standard deviation is reported only
across the training trials. These results help to disentangle the impact of test and training trials.
For example, while ConfTr with APS (during training) works in the best case, the standard
deviation of 3.1 across multiple training trials indicates that training is not stable.

Fashion-MNIST: Ablation for CoverTr and ConfTr
Method Baseline Bel CoverTr ConfTr
Train ThrL Thr ThrLP ThrLP ThrLP +Lclass
Test ThrL Thr APS ThrL Thr Thr Thr Thr APS Thr APS

Ineff 2.52 2.05 2.36 1.83 1.9 4.03 2.69 1.69 1.82 1.67 1.73
Acc 89.16 89.16 89.16 84.29 84.61 89.23 87.48 88.86 87.43 89.23 88.69

Table E.4: Ablation for CoverTr and ConfTr on Fashion-MNIST: Complementary to Table 8.2,
we report inefficiency and accuracy for [Bel21] (Bel), CoverTr and ConfTr considering various
CP methods for training and testing on Fashion-MNIST. Besides not being able to train CoverTr
with Thr or APS, the observations on MNIST can be confirmed, i.e., Bel requires ThrL (i.e., on
logits) to function properly and training CoverTr or ConfTr with APS is difficult.

a 2-layer MLP with 128 units per hidden layer on top of the features (instead of re-initializing
and fine-tuning the logit layer). All reported results either correspond to fine-tuned (i.e., linear
model on features) or extended models (i.e., 2-layer MLP on features).

Random Training and Test Trials: For statistically meaningful results, we perform random
test and training trials. For test trials, we throw all calibration and test examples together
and sample a new calibration/test split for each trial, preserving the original calibration/test
composition which is summarized in Table E.1. Additionally, and in contrast to [Bel21], we
consider random training trials: For training trials, after hyperparameters optimization on all
training examples, we train 10 models with the final hyperparameters on a new training set
obtained by sampling the original one with up to 5 replacements. For example, on MNIST, with
55k training examples, we randomly sample 10 training sets of same size with each, on average,
containing only ∼68% unique examples from the original training set. As a consequence, our
evaluation protocol accounts for randomness at test time (i.e., regarding the calibration set)
and at training time (i.e., regarding the training set, model initialization, etc.).

Hyperparameters: The final hyperparameters selected for ConfTr (for Thr at test time)
on all datasets are summarized in Table E.2. These were obtained using grid search over
the following hyperparameters: batch size in {1000, 500, 100} for WineQuality, MNIST, EM-
NIST, Fashion-MNIST and CIFAR, {300, 200, 100, 50} on GermanCredit and {80, 40, 20, 10}
on Camelyon; learning rate in {0.05, 0.01, 0.005}; temperature T ∈ {0.01, 0.1, 0.5, 1}; size
weight λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10} (c.f. Equation (5), right); and
κ ∈ {0, 1} (c.f. Equation (8.6)). Grid search was done for each dataset individually on 100%
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Batch Size and Learning Rate
Batch Size 1000 1000 1000 500 500 500 100 100 100
Learning Rate 0.05 0.01 0.005 0.05 0.01 0.005 0.05 0.01 0.005

Ineff 2.27 2.24 2.24 2.18 2.18 2.17 8.04 7.32 9.66
Acc 89.05 89.18 89.06 90.23 90.22 90.27 11.5 22.46 12.13

Size Weight λ

λ 0.001 0.005 0.01 0.05 0.1 1 10

Ineff 2.18 2.18 2.18 2.19 2.19 2.19 2.16
Acc 90.2 20.23 90.23 90.2 90.25 90.23 90.26

Temperature T
T 0.01 0.05 0.1 0.5 1 5 10

Ineff 2.39 2.23 2.2 2.19 2.18 2.2 2.29
Acc 88.54 89.94 90.02 90.24 90.28 90.05 89.63

Confidence Level α (during training)
α 0.1 0.05 0.01 0.005

Ineff 8.07 7.23 2.18 2.17
Acc 12.88 39.82 90.23 89.47

Table E.5: Hyperparameter Ablation on MNIST: For ConfTr without Lclass, we report ineffi-
ciency and accuracy when varying hyperparameters individually: batch size/learning rate, size
weight λ, temperature T and confidence level α. While size weight λ and temperature T have
insignificant impact, too small batch size can prevent ConfTr from converging. Furthermore,
the chosen hyperparameters do not generalize well to higher α ∈ {0.1, 0.05}.

of the training examples (c.f. Table E.1). That is, for hyperparameter optimization we did not
perform random training trials as described above. The best hyperparameters according to
inefficiency after evaluating 3 random calibration/test splits were selected, both for Thr and
APS at test time, with and without Lclass.

Table E.2 allows us to make several observations. First, on the comparably small (and
binary) datasets Camelyon and GermanCredit, the size weight λ = 5 is rather high. For
ConfTr without Lclass, this just indicates that a higher learning rate could be used. Then using
Lclass, however, this shows that the size loss is rather important for ConfTr, especially on
binary datasets. Second, we found the temperature T to have low impact on results, also see
Section E.4. On multiclass datasets, the size weight λ is usually higher when employing Lclass.
Finally, especially with Lclass, using “valid” size loss, i.e., κ = 1, to not penalize confidence sets
of size 1, works better than κ = 0.

E.2 Importance of Random Trials

In Table E.3 we highlight the importance of random training and test trials for evaluation. On
the left, we show the impact of trials at test time, i.e., 10 random calibration/test splits, for a
fixed model on MNIST. While the standard deviation of coverage is comparably small, usually
≤ 0.2%, standard deviation of inefficiency is higher in relative terms. This makes sense as
coverage is guaranteed, while inefficiency depends more strongly on the sampled calibration
set. The right table, in contrast, shows that training trials exhibit lower standard deviation in
terms of inefficiency. However, training with, e.g., APS will mainly result in high inefficiency,
on average, because of large standard deviation. In fact, ConfTr with APS or Thr at training
time results in worse inefficiency mainly because training is less stable. This supports the
importance of running multiple training trials for ConfTr.
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CIFAR10: Fine-tuning “Extend”
Method Baselines Bel CoverTr ConfTr ConfTr
Train ThrL ThrLP ThrLP ThrLP +Lclass ThrLP +Lclass
Test ThrL Thr APS Thr Thr Thr APS Thr APS Thr Thr

Ineff 3.92 2.93 3.3 2.93 2.84 2.88 3.05 2.84 2.93 2.89 2.96
Acc 82.6 82.6 82.6 82.18 82.36 82.32 82.34 82.4 82.4 82.3 82.23

CIFAR10: Ensemble Results
Method (Ensemble Models) Ensemble+MLP +ConfTr
Train ThrLP
Test ThrL Thr APS ThrL Thr APS Thr

Avg. Ineff 4.19 3.1 3.48 3.12 2.4 2.77 2.35
Best Ineff 3.74 2.84 3.17 3.0 2.33 2.71 2.3
Avg. Acc 80.65 80.65 80.65 85.88 85.88 85.88 85.88
Best Acc 82.58 82.58 82.58 86.01 86.01 86.01 86.02

EMNIST
Method Baselines Bel ConfTr
Train ThrL ThrL ThrLP ThrLP +Lclass
Test ThrL Thr APS ThrL Thr Thr APS Thr APS

Ineff 5.07 2.66 4.23 3.95 3.48 2.66 2.86 2.49 2.87
Ineff, α=0.005 9.23 4.1 6.04 – – 3.37 – – –
Ineff, α=0.001 23.89 15.73 19.33 – – 13.65 – – –
Acc 83.79 83.79 83.79 80.69 80.69 77.1 77.43 77.49 78.09

CIFAR100
Method Baselines Bel ConfTr
Train ThrL ThrLP ThrLP +Lclass
Test ThrL Thr APS Thr Thr APS Thr APS

Ineff 19.22 10.63 16.62 10.91 10.78 12.99 10.44 12.73
Acc 73.36 73.36 73.36 72.65 72.02 72.78 73.27 72.99

Table E.6: Inefficiency and Accuracy on Multiclass Datasets: Results for CoverTr and training
a non-linear 2-layer MLP on the ResNet features on CIFAR10, EMNIST and CIFAR100. We
report inefficiency and accuracy in all cases, focusing on ConfTr in comparison to Bel. On
EMNIST, we additionally consider α = 0.005, 0.001 (for the baseline and ConfTr only). ConfTr
consistently improves inefficiency of Thr and APS.

E.3 Coverage/Conformal Training Ablation on Fashion-MNIST

Table E.4 presents additional ablation for CoverTr and ConfTr on Fashion-MNIST, complemen-
tary to Table 8.2. In contrast to MNIST, Bel is able to improve inefficiency slightly over the
baseline using Thr. This also reduces the improvement of ConfTr over Bel on Fashion-MNIST.
Nevertheless, we were unable to train CoverTr with Thr or APS on Fashion-MNIST. Overall,
the results in Table E.4 support the observations made on MNIST.

E.4 Impact of Hyperparameters

In Table E.5, we conduct ablation for individual hyperparameters of ConfTr with ThrLP and
without Lclass on MNIST. The hyperparameters used in our experiments, c.f. Table E.2, are
highlighted in bold. As outlined in Section E.1, hyperparameter optimization was conducted
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on 100% training examples with only 3 random test trials, while Table E.5 shows results using
random training and test trials. We found batch size and learning rate to be most impactful.
While batch sizes 1000 and 500 both work, batch size 100 prevents ConfTr from converging
properly. This might be due to the used α = 0.01 which might be too low for batch size 100
where only 50 examples are available for calibration during training. Without Lclass, the size
weight λ merely scales the learning rate and thus has little to no impact. For ConfTr with
Lclass, we generally found the size weight λ to be more important for balancing classification
loss L and size loss Ω in Equation (8.7). Temperature has no significant impact, although a
temperature of 0.5 or 1 works best. Finally, the hyperparameters do generalize to a lower
confidence level α = 0.005. Significantly lower values, e.g., α = 0.001, are, however, not
meaningful due to the batch size of 500. However, significantly higher confidence levels, e.g.,
α = 0.1 or α = 0.05, require re-optimizing the other hyperparameters.

E.5 All Inefficiency Results

Table E.6 shows complementary results for ConfTr on CIFAR10, EMNIST and CIFAR100. On
CIFAR10, we also include ConfTr using a 2-layer MLP on top of ResNet features – instead
of the linear model used in Section 8.4.2, referred to as “extending”. However, inefficiency
increases slightly compared to re-initializing and training just the (linear) logit layer. This
shows that the smaller inefficiency improvements on CIFAR are not due to the linear model
used, but rather caused by the features themselves. We suspect that this is because the features
are trained to optimize cross-entropy loss, leaving ConfTr less flexibility to optimize inefficiency.
In Table E.7, we consider three binary datasets, i.e., WineQuality, GermanCredit and Camelyon.
On binary datasets, ThrL, Thr and APS perform very similar. This already suggests that there
is little room for inefficiency improvements. Indeed, ConfTr is not able to improve inefficiency
significantly. However, this is partly due to our thorough evaluation scheme: On Camelyon

WineQuality
Method Baselines Bel CoverTr ConfTr
Train ThrL ThrLP ThrLP ThrLP +Lclass
Test ThrL Thr APS Thr Thr Thr APS Thr APS

Ineff, α=0.01 1.76 1.76 1.79 1.77 1.81 1.75 1.82 1.74 1.77
Ineff, α=0.05 1.48 1.49 1.53 1.57 1.50 1.51 – 1.52 –
Acc 82.82 82.82 82.82 71.3 81.5 73.8 74.24 73.91 73.91

GermanCredit
Method Baselines Bel ConfTr
Train ThrL ThrLP +Lclass
Test ThrL Thr APS Thr Thr Thr

Ineff 1.89 1.86 1.90 1.85 1.88 1.77
Acc 74.4 74.4 74.4 72.35 72.81 69.5

Camelyon* α=0.05

Method Baselines Bel ConfTr
Train ThrL ThrLP +Lclass
Test ThrL Thr APS Thr Thr Thr

Best Ineff 1.41 1.47 1.59 1.25 1.2 1.25
Best Acc 88 88 88 92 91.5 85

Table E.7: Inefficiency and Accuracy on Binary Datasets. Experimental results on the binary
datasets WineQuality, GermanCredit and Camelyon. While we include APS on WineQuality,
we focus on Thr on GermanCredit and Camelyon due to slightly lower inefficiency. However,
ThrL, Thr and APS perform very similarly on all tested binary datasets. Generally, ConfTr
does not improve significantly over the baseline. * On Camelyon, we report the best results
without training trials as sub-sampling the 280 training examples is prohibitively expensive.
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Figure E.1: Reducing Class- and Group-Conditional Inefficiency on CIFAR. Results, comple-
mentary to Figure 8.3, showing the impact of higher size weights ω in Equation (8.6) for classes
0 and 3 (“airplane” and “cat”) on CIFAR10 and coarse classes 9 and 15 (“large man-made
outdoor things” and “reptiles”) on CIFAR100. ConfTr allows reducing inefficiency (blue) in all
cases, irrespective of whether inefficiency is generally above or below average (green).

(α=0.05), we do not report averages across all training trials, but the results corresponding to
the best model. This is because sub-sampling the training examples is unreasonable given that
there are only 280 of them. Thus, Camelyon shows that ConfTr can improve inefficiency. On
WineQuality or GermanCredit, this is “hidden” in reporting averages across 10 training runs.

E.6 Shaping Class-Conditional Inefficiency on Other Datasets

Figure E.1 and E.2 provide complementary results demonstrating the ability of ConfTr to shape
the class- or group-conditional inefficiency distribution. First, Figure E.1 plots inefficiency
for individual classes on CIFAR10 and coarse classes on CIFAR100. In both cases, significant
inefficiency reductions are possible for high weights ω in Equation (8.6), irrespective or whether
the corresponding (coarse) class has above-average inefficiency to begin with. This means
that inefficiency reduction is possible for easier and harder classes alike. Second, Figure E.2
plots the relative inefficiency changes, in percentage, possible per-class or group on MNIST,
Fashion-MNIST and CIFAR100. For CIFAR100, we show only the first 10 classes for brevity. In
all cases, significant inefficiency reductions are possible, at the expense of a slight increases in
average inefficiency across all classes. Here, MNIST is considerably easier than Fashion-MNIST:
higher inefficiency reductions are possible per class and the cost in terms of average inefficiency
increase is smaller. On CIFAR100, inefficiency reductions of 40% or more are possible. This is
likely because of the high number of classes, i.e., ConfTr has a lot of flexibility to find suitable
trade-offs during training.
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Figure E.2: Relative Class and Group-Conditional Inefficiency Improvements: We plot
the possible (relative) inefficiency reduction by class or group (“odd” vs “even”) on MNIST
and Fashion-MNIST. On CIFAR100, we consider the first 10 classes for brevity. In all cases,
significant per-class or -group inefficiency reductions are possible.
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Figure E.3: Coverage Confusion Changes on Fashion-MNIST and CIFAR10: Left: coverage
confusion change when targeting classes 4 and 6 (“coat” and “shirt”) on Fashion-MNIST and 3
and 5 (“cat” and “dog”) on CIFAR10. The separate cell on the left is the ConfTr baseline which
is, up to slight variations, close to Ly,k = 0. Middle and right: coverage confusion for a whole
row, i.e., Σy,k with fixed class y and all k ̸= y. We show row 6 on Fashion-MNIST and 3 on
CIFAR10. In both cases, coverage confusion can be reduced significantly.

E.7 Manipulating Coverage Confusion on Other Datasets

Figure E.3 and E.4 provide additional results for reducing coverage confusion using ConfTr.
First, supplementary to Figure 8.4, we provide the actual numbers in Figure E.3. In particular,
we visualize how the actual coverage confusion entries (left) or rows (right) change depending
on the off-diagonal weights Ly,k. Second, Figure E.4 presents additional results on MNIST
and CIFAR10. From these examples it can be seen that reducing coverage confusion is easier
on MNIST, reducing linearly with the corresponding penalty Ly,k. Moreover, the achieved
reductions are more significant. On CIFAR10, in contrast, coverage confusion reduces very
quickly for small Ly,k before stagnating for larger Ly,k. At the same time, not all targeted class
pairs might yield significant coverage confusion reductions.

E.8 Miscoverage Results on Additional Datasets

Table E.8 provides miscoverage results for different settings on MNIST, Fashion-MNIST and
CIFAR10. We are able to reduce miscoverage significantly on MNIST and Fashion-MNIST.
Only on CIFAR10, considering “vehicles” vs. “animals” as on CIFAR100 in Section 8.4.3, we
are unable to obtain significant reductions. While, we are able to reduce MisCover0→1 slightly
from 22.22% to 20%, MisCover1→0 increases slightly from 16.45% to 16.73% even for high
off-diagonal weights used in L. Compared to CIFAR100, this might be due to less flexibility to
find suitable trade-offs with only 10 classes. Moreover, miscoverages on CIFAR10 are rather
small to begin with, indicating that vehicles and animals do not overlap much by default.
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Figure E.4: Coverage Confusion Reduction on MNIST and CIFAR10: Controlling coverage
confusion for various class pairs. On MNIST, coverage confusion reduction is usually more
significant and the reduction scales roughly linear with the weight Ly,k. On CIFAR10, in
contrast, coverage confusion cannot always be reduced for multiple class pairs at the same
time (see light gray).
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K0= 2 vs. K1= Others
MNIST MisCover ↓
Method Ineff 0→1 1→0

ConfTr 2.11 49.68 14.74
LK0,K1=1 2.15 36.63 17.42
LK1,K0=1 2.09 51.54 7.62

K0= Even vs. K1= Odd
MNIST MisCover ↓
Method Ineff 0→1 1→0

ConfTr 2.11 38.84 38.69
LK0,K1=1 2.16 29.36 49.08
LK1,K0=1 2.09 44.3 26.08

K0= 6 (“shirt”) vs. K1= Others
F-MNIST MisCover ↓
Method Ineff 0→1 1→0

ConfTr 1.67 80.28 20.93
LK0,K1=1 1.70 72.58 25.81
LK1,K0=1 1.72 81.18 17.66

K0= “vehicles” vs. K1= “animals”
CIFAR10 MisCover ↓
Method Ineff 0→1 1→0

ConfTr 2.84 22.22 16.45
LK0,K1=1 2.92 20.00 22.69
LK1,K0=1 2.87 24.76 16.73

Table E.8: Miscoverage on MNIST, Fashion-MNIST and CIFAR10: We present inefficiency
and miscoverage for various cases: On MNIST, we consider 2 vs. other classes as well as
even vs. odd classes. In both cases, miscoverage can be reduced significantly. As in Table 8.5,
however, reducing MisCover0→1 usually increases MisCover1→0 and vice-versa. On Fashion-
MNIST, we consider 6 (“shirt”) vs. other classes. Only on CIFAR10, considering “vehicles” vs.
“animals”, miscoverage cannot be reduced significantly. In particular, we were unable to reduce
MisCover1→0.

E.9 Additional Results on Binary Datasets

Figure E.5 shows results complementing Figure 8.5 (right). Specifically, we show that reducing
inefficiency for class 1 (“good wine”) is unfortunately not possible. This might also be due
to the fact that class 1 is the majority class, with ∼63% of examples. However, in addition to
improving coverage conditioned on class 0, we are able to reduce coverage confusion Σ0,1, c.f.
Section 8.3.3. We found that these results generalize to GermanCredit, however, being less
pronounced, presumably because of significantly fewer training and calibration examples.
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Figure E.5: Manipulating Inefficiency and Coverage Confusion on WineQuality: Comple-
menting Figure 8.5 (right), we plot the possible inefficiency reduction for class 1 (“good wine”,
left) and full coverage confusion matrices for increased L0,0 > 1 and L1,0 > 0 (right, top
and bottom, respectively). While we can reduce inefficiency for class 0 (“bad wine”), this
is not possible for class 1. However, class-conditional coverage for class 0 can be improved
significantly and we can reduce coverage confusion Σ0,1.
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E.10 Effect of Conformal Training on Class-Conditional Inef-
ficiency and Coverage Confusion

Figure E.6 shows that standard ConfTr (without Lclass) does not have a significant influence
on the class-conditional inefficiency distribution compared to the baseline. Similarly, ConfTr
with Lclass and identity loss matrix L = IK does not influence coverage confusion besides
reducing overall inefficiency. Specifically, on MNIST, Fashion-MNIST and CIFAR10, we show
the class-conditional inefficiency distribution (left) as well as the coverage confusion matrices
(middle and right) for the baseline and ConfTr. On the left, we consider ConfTr without Lclass,
and on the right with Lclass. As can be seen, only an overall reduction of inefficiency is visible,
the distribution of Ineff[y], c.f. Equation (8.9), across classes y remains roughly the same. For
coverage confusion Σ from Equation (8.10), the same observation can be made, i.e., an overall
reduction of inefficiency also reduces confusion, but the spatial pattern remains the same.
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Figure E.6: Class-Conditional Inefficiency and Coverage Confusion: Comparison between
baseline and ConfTr regarding class-conditional inefficiency and coverage confusion Σ, c.f.
Section 8.3.3. For the inefficiency comparison, we consider ConfTr without Lclass, while for
coverage confusion, ConfTr was trained with Lclass. As ConfTr reduces overall inefficiency
quite significantly on MNIST and Fashion-MNIST, class-conditional inefficiency is also lower,
on average. But the distribution across classes remains similar. The same holds for coverage
confusion, where lower overall inefficiency reduces confusion across the matrix, but the
“pattern” remains roughly the same. On CIFAR10, ConfTr does not improve average inefficiency
significantly, such that the confusion matrix remains mostly the same.
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